Author:
Gonera Cezary,Gonera Joanna,Lucas Javier de,Szczesek Wioletta,Zawora Bartosz M.
Subject
Mechanical Engineering,Applied Mathematics,Mathematical Physics,Modeling and Simulation,Statistical and Nonlinear Physics,Mathematics (miscellaneous)
Reference34 articles.
1. Bertrand, J., Théorème relatif au mouvement d’un point attiré vers un centre fixe, C. R. Acad. Sci. Paris, 1873, vol. 77, no. 16, pp. 849–853.
2. Higgs, P. W., Dynamical Symmetries in a Spherical Geometry: 1, J. Phys. A, 1979, vol. 12, no. 3, pp. 309–323.
3. Schrödinger, E., A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions, Proc. Roy. Irish Acad. Sect. A, 1940, vol. 46, pp. 9–16.
4. Leemon, H. I., Dynamical Symmetries in a Spherical Geometry: 2, J. Phys. A, 1979, vol. 12, no. 4, pp. 489–501.
5. Granovskii, Ya. I., Zhedanov, A. S., and Lutsenko, I. M., Quadratic Algebras and Dynamics in Curved Space: 1. An Oscillator, Theoret. and Math. Phys., 1992, vol. 91, no. 2, pp. 474–480; see also: Teoret. Mat. Fiz., 1992, vol. 91, no. 2, pp. 207-216.