1. McCulloch, W.S. and Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 1943, vol. 5, no. 4, pp. 115–133. https://doi.org/10.1007/BF02478259
2. Bebis, G. and Georgiopoulos, M., Feed-forward neural networks, IEEE Potentials, 1994, vol. 13, no. 4, pp. 27–31. https://doi.org/10.1109/45.329294
3. Sutskever, I., Vinyals, O., and Quoc, V.L., Sequence to sequence learning with neural networks, Advances in Neural Information Processing Systems Conference, Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K.Q., Eds., Curran Associates, 2014, vol. 27. https://proceedings.neurips.cc/paper/2014/ file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
4. Gers, F.A., Schmidhuber, J., and Cummins, F., Learning to forget: continual prediction with LSTM, Neural Comput., 2000, vol. 12, no. 10, pp. 2451–2471. https://doi.org/10.1162/089976600300015015
5. Trappenberg, T.P., Machine learning with sklearn, Fundamentals of Machine Learning, Oxford: Oxford Univ. Press, 2019, pp. 38–65.