Skip to main content

Advertisement

Log in

The Role of Cyanobacteria in Marine Ecosystems

  • REVIEW
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

This review paper considers the features of the biology of cyanobacteria, their role as photosynthetics, nitrogen fixers, and producers of biologically active substances, as well as the distribution of these microorganisms in various marine ecosystems. The symbioses of marine cyanobacteria with a wide range of eukaryotic organisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abdullin, Sh.R. and Bagmet, V.B., Mixotrophy of cyanobacteria and algae inhabiting caves, Zh. Obshch. Biol., 2016, vol. 77, no. 1, pp. 54–62.

    Google Scholar 

  2. Alexandrov, B.G., Terenko, L.M., and Nesterova, D.A., The first case of a bloom of Nodularia spumigena Mert. ex Born. et Flah. (Cyanophyta) in the Black Sea, Int. J. Algae, 2012, vol. 14, no. 1, pp. 31–43.

    Google Scholar 

  3. Allakhverdiev, S.I., Kreslavski, V.D., Zharmukhamedov, S.K., et al., Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria, Biochemistry (Moscow), 2016, vol. 81, no. 3, pp. 201‒212.

    CAS  PubMed  Google Scholar 

  4. Andreeva, N.A., Development of cyanobacteria in marine sediments contaminated with toxicants, in Zbir. nauk. statei mizhnar. nauk.-prakt. konf. “Ekologichni problemi Chornogo morya” (Coll. Sci. Pap. Int. Sci.-Pract. Conf. “Ecological Problems of the Black Sea”), Odessa: Innovatsionno-Inf. Tsentr, 2007, pp. 8–11.

    Google Scholar 

  5. Andreeva, N.A., Cyanobacteria in the ecosystem of near-shore dolphin enclosures (Black Sea), in Materialy II Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 105-letiyu so dnya rozhdeniya prof. E.A. Shtinoi “Vodorosli i tsianobakterii v prirodnykh i sel’skokhozyaistvennykh ekosistemakh” (Mater. II Int. Sci.-Pract. Conf. Commem. 105th Anniv. Prof. E.A. Shtina “Algae and Cyanobacteria in Natural and Agricultural Ecosystems”), Kirov: Vyatskaya Gos. S–kh. Akad., 2015, pp. 18–22.

  6. Andreeva, N.A., Algological communities of the Sevastopol bays coastal zone, in Materialy I Mezhdunarodnogo ekologicheskogo foruma “Krym – ekologo-ekonomicheskii region. Prostranstvo noosfernogo razvitiya” 2017 goda (Mater. I Int. Ecol. Forum “Crimea: the Ecological and Economic Region, a Space of Noosphere Development”, 2017), Sevastopol: Fil. MGU im. M.V. Lomonosova v Sevastopole, 2017, pp. 135–139.

  7. Andreeva, N.A., Mikrobiota i al’goflora sredy obitaniya del’finov v usloviyakh nevoli (Microbiota and Algal Flora in Captive Dolphin Habitats), Saarbrücken, Germany: LAP LAMBERT Acad. Publ., 2017.

  8. Andreeva, N.A., Microalgae and cyanobacteria of periphytic communities in the bays of the Sevastopol water area, in Materialy dokladov IV Vserossiiskoi nauchnoi konferentsii c mezhdunarodnym uchastiem “Vodorosli: problemy taksonomii, ekologii i ispol’zovanie v monitoringe” (Proc. IV All-Russ. Sci. Conf. Int. Participation “Algae: Problems of Taxonomy, Ecology and Use in Monitoring”), St. Petersburg: Renome, 2018, pp. 11–15.

  9. Andreeva, N.A., Smirnova, L.L., and Antonova, L.S., Algal flora of marine bottom sediments contaminated with chemical toxicants (Kerch Strait, Black Sea), in Materialy mezhdunarodnoi nauchnoi konferentsii i VII Shkoly po morskoi biologii “Sovremennye problemy al’gologii” (Mater. Int. Sci. Conf., VII Mar. Biol. School “Modern Problems of Phycology”), Rostov-on-Don: Yuzhn. Nauchn. Tsentr, Ross. Akad. Nauk, 2008, pp. 14–16.

  10. Andreeva, N.A., Ostapchuk, T.V., and Konovalova, G.S., Cyanobacteria in microalgocenosises of dolphins (Tursiops truncatus) skin and places where they are kept, in Sbornik nauchnykh trudov po materialam VIII mezhdunarodnoi konferentsii “Morskie mlekopitayushchie Golarktiki” (Collect. Sci. Pap. Eight Int. Conf. “Marine Mammals of the Holarctic”), Moscow: Marine Mammal Council, 2015, vol. 1, pp. 34–40.

  11. Belyakova, G.A., Dyakov, Yu.T., and Tarasov, K.L., Botanika. T. 1. Vodorosli i griby: uchebnik dlya studentov vysshykh uchebnykh zavededii (Botany, vol. 1: Algae and Fungi: A Textbook for Students of Higher Educational Institutions), 4 vols., Moscow: Akademiya, 2006.

  12. Birger, T.I., Metabolizm vodnykh bespozvonochnykh v toksicheskoi srede (Metabolism of Aquatic Invertebrates in a Toxic Environment), Kiev: Naukova Dumka, 1979.

  13. Birkun, A.A. and Gol’din, E.B., Microphytic algae in the pathology of the cetaceans, Mikrobiol. Zh., 1997, vol. 59, no. 2, pp. 96–105.

    Google Scholar 

  14. Marine phytoplankton, in Bol’shaya entsiklopediya nefti i gaza (Great Encyclopedia of Oil and Gas). http://www.ngpedia.ru/id563524p1.html. Accessed November 9, 2016.

  15. Vasser, S.P., Kondratyeva, N.V., Masyuk, N.P., et al., Vodorosli. Spravochnik (Algae: A Reference Book), Kiev: Naukova Dumka, 1989.

  16. Global warming promotes the propagation of toxic cyanobacteria, Webmedinfo.ru. http://www.webmedinfo.ru/globalnoe-poteplenie-sposobstvuet-razmnozheniyu-toksichnyx-cianobakterij.html. Published July 5, 2012.

  17. Gol’din, E.B., Microscopic algae as the bioindicators of environmental situation in the capture places of marine mammals, Ekosist., Ikh Optim. Okhr., 2009, no. 20, pp. 105–113.

  18. Gol’din, E.B., Epizoitic algae vegetation of bottlenose dolphins in the Black Sea dolphinaria, Ekosist.,Ikh Optim. Okhr., 2010, vol. 2, no. 21, pp. 21–29.

    Google Scholar 

  19. Gol’din, E.B., Mass microalgal species in ecosystems: interspecific relations and co-evolutionary process, Ekosist.,Ikh Optim. Okhr., 2012, vol. 7, no. 26, pp. 114–125.

    Google Scholar 

  20. Gol’din, E.B., Biological activity of microalgae and its importance in interspecific relations, Ekosist.,Ikh Optim. Okhr., 2013, vol. 9, no. 28, pp. 49–76.

    Google Scholar 

  21. Golubkov, S.M., The role of consumers in food web dynamics and functioning of aquatic ecosystems, J. Sib. Fed. Univ.,Biol., 2013, vol. 4, pp. 335−353.

    Google Scholar 

  22. Gromov, B.V., Cyanobacteria in the biosphere, Soros. Obraz. Zh.: Biol., 1996, no. 9, pp. 33–39.

  23. Efimova, T.V., Churilova, T.Ya., Mukhanov, V.S., and Sakhon, E.G., The chromatic adaptation of phycoerythrin-containing cyanobacteria Synechococcus sp. (Black Sea), Voda: Khim. Ekol., 2018, nos. 4–6, pp. 106–115.

  24. Kiselev, I.A., Plankton morei i kontinental’nykh vodoemov. T. 1. Vvodnye i obshchie voprosy planktologii (Plankton of the Seas and Continental Waters, vol. 1: Introductory and General Problems of Planktology), Leningrad: Nauka, Leningr. Otd., 1969.

  25. Kovaleva, G.V., Benthic, periphytic and planktonic microalgae of the coastal area of the Sea of Azov, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg, 2006.

  26. Lutsenko, E.S., Shalygin, S.S., and Davydov, D.A., Periphytic cyanobacteria of the intertidal area of Kola Bay (Barents Sea), Vestn. Murm. Gos. Tech. Univ., 2013, vol. 16, no. 3, pp. 472–477.

    Google Scholar 

  27. Small organisms have a strong impact on the global climate, GeoMan: Geography. http://geoman.ru/ news/item/f00/s04/n0000449/index.shtml. Accessed November 9, 2016.

  28. Miroshnichenko, E.S., Epilithic littoral bacteriocenoses of the southern and middle arms of the Kola Bay (Barents Sea), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2016.

  29. Nesterova, D.A. and Teren’ko, L.M., The species composition of planktonic algae in the deep-sea sediments of the Black and Adriatic Seas, in Tezisy dokladov IV Mezhdunarodnoi konferentsii “Aktual’nye problemy sovremennoi al’gologii” (Proc. IV Int. Conf. “Topical Problems of Modern Phycology”), Kiev, 2012, pp. 207–208.

  30. Pinevich, A.V., Mikrobiologiya. Biologiya prokariotov (Microbiology: Biology of Prokaryotes), 3 vols., 2nd ed., St. Petersburg: St.-Peterb. Univ., 2006, vol. 1.

  31. Polyak, Y.M. and Sukharevich, V.I., Toxic cyanobacteria: their occurrence, regulation of toxin production and control, Voda: Khim. Ekol., 2017, nos. 11‒12, pp. 125‒139.

  32. Pospelova, N.V., Food supply of mollusks farmed at sea (Katsiveli, Crimea, Black Sea), in Materialy mezhdunarodnoi nauchnoi konferentsii “Aktual’nye problemy akvakul’tury v sovremennyi period” (Proc. Int. Sci. Conf. “Urgent Issues of Aquaculture in the Current Period”), Rostov-on-Don, 2015, pp. 135‒138.

  33. Pugovkin, D.V., Miroshnichenko, E.S., Voskoboinikov, G.M., et al., On the resistance of epiphytic cyanobacteria of the Kola Bay to the effects of oil hydrocarbons in the aquatic ecosystem, Vestn. Murm. Gos. Tech. Univ., 2018, vol. 21, no. 2, pp. 221–227.

    Google Scholar 

  34. South, G.R. and Whittick, A., An Introduction to Phycology, Oxford: Blackwell, 1987.

    Google Scholar 

  35. Sivash, A.A., Los’, S.I., Fomishina, R.N., and Zolotareva, E.K., Regulatory role of glucose in metabolism of certain Cyanophyta representatives, Int. J. Algae, 2004, vol. 6, no. 1, pp. 50‒60.

    Google Scholar 

  36. Sirenko, L.A. and Kozitskaya, V.N., Biologicheski aktivnye veshchestva vodoroslei i kachestvo vody (Biologically Active Substances of Algae and Water Quality), Kiev: Naukova Dumka, 1988.

  37. Smirnova, L.L., Microbiological methods for ecological monitoring of bottom sediments of the Black Sea shelf, Ecol. Saf. Coastal Shelf Zones Sea, 2013, no. 27, pp. 422‒430.

  38. Smirnova, L.L., Ryabushko, V.I., Ryabushko, L.I., and Babich, I.I., Influence of concentration of nutrients on the microalgae communities of the Black Sea shallow-water, Algologia, 1999, vol. 9, no. 3, pp. 32–42.

    Google Scholar 

  39. World Ocean temperature and phytoplankton, NHN.ru (Human Native Home: People’s Culture), published August 27, 2010. http://www.hnh.ru/health/2010-08-27-2. Accessed November 9, 2016.

  40. Shalapenok, L.S., Picocyanobacteria as a component of plankton communities of the Black Sea, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Sevastopol, 1991.

  41. Adams, D.G., Symbiotic interactions, in Ecology of Cyanobacteria: Their Diversity in Time and Space, Dordrecht, the Netherlands: Kluwer, 2000, pp. 523–561.

    Google Scholar 

  42. Alex, A., Vasconcelos, V., Tamagnini, P., et al., Unusual symbiotic cyanobacteria association in the genetically diverse intertidal marine sponge Hymeniacidon perlevis (Demospongiae, Halichondrida), PLoS One, 2012, vol. 7, art. ID e51834. https://doi.org/10.1371/journal.pone.0051834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Thukair, A.A., Abed, R.M.M., and Mohamed, L., Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia, Mar. Pollut. Bull., 2007, vol. 54, no. 2, pp. 173–179.

    CAS  PubMed  Google Scholar 

  44. Bano, A. and Siddiqui, P.J.A., Distribution of epiphytic cyanobacteria on red macroalgal species occurring at a rocky shore (Buleji), Karachi, Pakistan, FUUASTJ. Biol., 2017, vol. 7, no. 2, pp. 231–239.

    Google Scholar 

  45. Bergman, B., Rai, A.N., and Rasmussen, U., Cyanobacterial associations, in Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, Dordrecht, the Netherlands: Springer-Verlag, 2007, pp. 257–301.

    Google Scholar 

  46. Brocke, H.J., Polerecky, L., de Beer, D., et al., Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs, PLoS One, 2015, vol. 10, no. 5, art. ID e0125445. https://doi.org/10.1371/journal.pone.0125445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bryceson, I. and Fay, P., Nitrogen fixation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation, Mar. Biol., 1981, vol. 61, pp. 159‒166.

    Google Scholar 

  48. Butterfield, N.J., Proterozoic photosynthesis – a critical review, Palaeontology, 2015, vol. 58, pp. 953‒972.

    Google Scholar 

  49. Caroppo, C., Turicchia, S., and Margheri, M.C., Phytoplankton assemblages in coastal waters of the northern Ionian Sea (eastern Mediterranean), with special reference to cyanobacteria, J. Mar. Biol. Assoc. U. K., 2006, vol. 86, pp. 927–937.

    Google Scholar 

  50. Carpenter, E.J., Marine cyanobacterial symbioses, Biol. Environ.: Proc. R. Ir. Acad., 2002, vol. 102B, no. 1, pp. 15–18.

    Google Scholar 

  51. Carpenter, E.J. and Foster, R.A., Marine cyanobacterial symbioses, in Cyanobacteria in Symbiosis, Dordrecht, the Netherlands: Kluwer, 2003, pp. 11–17.

    Google Scholar 

  52. Carpenter, E.J. and Price, C.C., Marine oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts, Science, 1976, vol. 191, pp. 1278‒1280.

    CAS  PubMed  Google Scholar 

  53. Cepoi, L., Environmental and technological stresses and their management in cyanobacteria, in Cyanobacteria: From Basic Science to Applications, 1st ed., London: Academic, 2019, ch. 11, pp. 217‒244.

    Google Scholar 

  54. Charpy, L., Casareto, B.E., Langlade, M.J., and Suzuki, Y., Cyanobacteria in coral reef ecosystems: a review, J. Mar. Biol., 2012, vol. 2012, art. ID 259571. https://doi.org/10.1155/2012/259571

    Article  Google Scholar 

  55. Charpy, L., Palinska, K.A., Casareto, B., et al., Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems, Microb. Ecol., 2010, vol. 59, no. 1, pp. 174–186.

    CAS  PubMed  Google Scholar 

  56. Chen, M., Schliep, M., Willow, R.D., et al., A red-shifted chlorophyll, Science, 2010, vol. 329, no. 5997, pp. 1318−1319.

    CAS  PubMed  Google Scholar 

  57. Cohen, Y. and Gurevitz, M., The cyanobacteria—Ecology, physiology and molecular genetics, in The Prokaryotes, New York: Springer, 2006, pp. 1074‒1098.

    Google Scholar 

  58. Cyanobacteria in Symbiosis, Rai, A.N., Bergman, B., and Rasmussen, U., Eds., Dordrecht, the Netherlands: Kluwer, 2003.

    Google Scholar 

  59. Fatimahsari, T.K., Fitri, S.G.S., and Khastini, R.O., Epiphytic cyanobacteria on Avicennia marina pneumatophore in mangrove ecosystem of Cagar Alam Pulau Dua (CAPD) Serang, Banten, in Proc. Int. Conf. on Research, Implementation and Education of Mathematics and Sciences, Yogyakarta State Univ., 2014, pp. 177–182.

  60. Ferris, M.J. and Palenik, B., Niche adaptation in ocean cyanobacteria, Nature, 1998, vol. 396, pp. 226–228.

    CAS  Google Scholar 

  61. Gaysina, L.A., Saraf, A., and Singh, P., Cyanobacteria in diverse habitats, in Cyanobacteria: From Basic Science to Applications, 1st ed., London: Academic, 2019, pp. 1–28.

    Google Scholar 

  62. Groβkopf, T., Mohr, W., Baustian, T., et al., Doubling of marine dinitrogen-fixation rates based on direct measurements, Nature, 2012, vol. 488, pp. 361–364.

  63. Gupta, V., Prasanna, R., Cameotra, S.S., et al., Enhancing the production of an antifungal compound from Anabaena laxa through modulation of environmental conditions and its characterization, Process Biochem. (Oxford, U. K.), 2013, vol. 48, nos. 5–6, pp. 768–774.

    CAS  Google Scholar 

  64. Hamisi, M., Díez, B., Lyimo, T., et al., Epiphytic cyanobacteria of the seagrass Cymodocea rotundata: diversity, diel nifH expression and nitrogenase activity, Environ. Microbiol. Rep., 2013, vol. 5, pp. 367–376.

    CAS  PubMed  Google Scholar 

  65. Hess, W.R., Garczarek, L., Pfreundt, U., and Partensky, F., Phototrophic microorganisms: the basis of the marine food web, in The Marine Microbiome, Switzerland: Springer, 2016, pp. 57‒97.

    Google Scholar 

  66. Komárek, J., Several problems of the polyphasic approach in the modern cyanobacterial system, Hydrobiologia, 2018, vol. 811, no. 1, pp. 7–17.

  67. Komárek, J., Kaštovský, J., Mareš, J., and Johansen, J.R., Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach, Preslia, 2014, no. 86, pp. 295–335.

  68. Konstantinou, D., Gerovasileiou, V., Voultsiadou, E., and Gkelis, S., Sponges-Cyanobacteria associations: Global diversity overview and new data from the Eastern Mediterranean, PLoS One, 2018, vol. 13, art. ID e0195001. https://doi.org/10.1371/journal.pone.0195001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, R.E., Phycology, Cambridge: Cambridge Univ. Press, 2008.

    Google Scholar 

  70. Li, Z., Advances in marine symbiotic cyanobacteria, in Handbook on Cyanobacteria: Applications, New York: Nova Science, 2009, pp. 463–472.

    Google Scholar 

  71. Little, M.G., The zonation of marine supralittoral blue-green algae, Br. Phycol. J., 1973, vol. 8, pp. 47–50.

    Google Scholar 

  72. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 2014, vol. 506, pp. 307–315.

    CAS  PubMed  Google Scholar 

  73. Mague, T.H. and Holm-Hansen, O., Nitrogen fixation on a coral reef, Phycologia, 1975, vol. 14, pp. 87–92.

    Google Scholar 

  74. Marchant, H.J., Davidson, A.T., and Wright, S.W., The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean, in Proc. NIPR Symp.Polar Biol., 1987, vol. 1, pp. 1–9.

    Google Scholar 

  75. Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs, Carpenter, E.J., Capone, D.G., and Rueter, J.G., Eds., Dordrecht, the Netherlands: Kluwer, 1992, pp. 163–175.

    Google Scholar 

  76. Mazur-Marzec, H., Characterization of phycotoxins produced by cyanobacteria, Int. J. Oceanogr. Hydrobiol., 2006, vol. 35, pp. 85–109.

    CAS  Google Scholar 

  77. Mazur-Marzec, H. and Pliński, M., Do toxic cyanobacteria blooms pose a threat to the Baltic ecosystem?, Oceanologia, 2009, vol. 51, pp. 293–319.

    Google Scholar 

  78. Metcalf, J.S. and Codd, G.A., The status and potential of cyanobacteria and their toxins as agents of bioterrorism, in Handbook on Cyanobacteria, New York: Nova Science, 2009, ch. 8, pp. 259‒281.

    Google Scholar 

  79. Muller-Feuga, A., Moal, J., and Kaas, R., The microalgae of aquaculture, in Live Feeds in Marine Aquaculture, Oxford: Blackwell, 2003, ch. 6, pp. 206‒252.

    Google Scholar 

  80. Nagarkar, S., Cyanobacteria culture collection: a unique resource for ecology and biotechnology research, Porcupine!, 2002, no. 25, pp. 22–23.

  81. Not, F., Probert, I., Ribeiro, C.G., et al., Photosymbiosis in marine pelagic environments, in The Marine Microbiome, Switzerland: Springer, 2016, pp. 305–332.

    Google Scholar 

  82. Oceans and Health: Pathogens in the Marine Environment, Belkin, S. and Colwell, R.R., Eds., New York: Springer, 2005.

    Google Scholar 

  83. O’Neil, J.M, Davis, T.W, Burford, M.A, and Gobler, C.J., The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change, Harmful Algae, 2012, vol. 14, pp. 313–334.

    Google Scholar 

  84. Oren, M., Steindler, L., and Ilan, M., Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus,Mar. Biol., 2005, vol. 148, pp. 35–41.

    CAS  Google Scholar 

  85. Paerl, H.W., Marine plankton, in Ecology of Cyanobacteria II: Their Diversity in Space and Time, Dordrecht, the Netherlands: Springer-Verlag, 2012, pp. 127–153.

    Google Scholar 

  86. Paerl, H.W. and Paul, V.J., Climate change: links to global expansion of harmful cyanobacteria, Water Res., 2012, vol. 46, pp. 1349–1363.

    CAS  PubMed  Google Scholar 

  87. Pathak, J., Ahmed, H., Singh, P.R., et al., Mechanisms of photoprotection in cyanobacteria, in Cyanobacteria: From Basic Science to Applications, London: Academic, 2019, pp. 145–171.

    Google Scholar 

  88. Pattanaik, B., Wulff, A., Roleda, M.Y., et al., Production of the cyanotoxin nodularin—A multifactorial approach, Harmful Algae, 2010, vol. 10, pp. 30‒38.

    CAS  Google Scholar 

  89. Pentecost, A. and Witton, B.A., Subaerial cyanobacteria, in Ecology of Cyanobacteria II: Their Diversity in Space and Time, Dordrecht, the Netherlands: Springer-Verlag, 2012, pp. 291–316.

    Google Scholar 

  90. Rai, A.N., Söderbäck, E., and Bergman, B., Tansley Review no. 116 Cyanobacterium-plant symbioses, New Phytol., 2000, vol. 147, pp. 449–481.

    CAS  Google Scholar 

  91. Rejmánková, E., Komárek, J., and Komárková, J., Cyanobacteria — a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America), Diversity Distrib., 2004, no. 10, pp. 189–199.

  92. Rodgers, J.H., Jr., Algal Toxins in Pond Aquaculture, SRAC Publication, no. 4605, Stoneville, Miss.: South. Reg. Aquacult. Cent., 2008, pp. 1‒8.

  93. Scanlan, D., Cyanobacteria: ecology, niche adaptation and genomics, Microbiol. Today, 2001, vol. 28, pp. 128–130.

    Google Scholar 

  94. Schopf, J.W., The fossil record of cyanobacteria, in Ecology of Cyanobacteria II: Their Diversity in Space and Time, Dordrecht, the Netherlands: Springer-Verlag, 2012, pp. 15−36.

    Google Scholar 

  95. Smith, J.L., Boyer, G.L., and Zimba, P.V., A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture, Aquaculture, 2008, vol. 280, nos. 1−4, pp. 5‒20.

    CAS  Google Scholar 

  96. Stal, L.J., Albertano, P., Bergman B., et al., BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment, Cont. Shelf Res., 2003, vol. 23, pp. 1695–1714.

    Google Scholar 

  97. Suikkanen, S., Allelopathic Effects of Filamentous Cyanobacteria on Phytoplankton in the Baltic Sea, Finnish Institute Marine Research – Contribution, no. 15, Helsinki: Finn. Inst. Mar. Res., 2008, pp. 9–41.

  98. Thajuddin, N. and Subramanian, G., Survey of cyanobacterial flora of the southern east coast of India, Bot. Mar., 1992, vol. 35, pp. 305–314.

    Google Scholar 

  99. Thajuddin, N., Subramanian, G., and Nagarkar, S., Marine cyanobacterial biodiversity from Andaman Islands, India, in Abstr. 4th Asia-Pacific Conf. Algal Biotechnol., Univ. of Hong Kong, 2000, p. 6.

  100. Symbiotic Associations, Biotechnology, Applied Microbiology, vol. 1 of The Prokaryotes, 3rd ed., Dworkin, M., Eds., New York: Springer, 2006,

    Google Scholar 

  101. Bacteria: Firmicutes, Cyanobacteria, vol. 4 of The Prokaryotes, 3rd ed., Dworkin, M., , Eds., New York: Springer, 2006.

    Google Scholar 

  102. Thompson, A.W., Foster, R.A., Krupke A., et al., Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga, Science, 2012, vol. 337, pp. 1546–1550.

    CAS  PubMed  Google Scholar 

  103. Ulcay, S., Taşkin, E., Kurt O., and Öztürk, M., Marine benthic cyanobacteria in Northern Cyprus (Eastern Mediterranean Sea), Turk. J. Bot., 2015, vol. 39, pp. 173–188.

    Google Scholar 

  104. Uysal, Z., Chroococcoid cyanobacteria Synechococcus spp. in the Black Sea: pigments, size, distribution, growth and diurnal variability, J. Plankton Res., 2001, vol. 23, no. 2, pp. 175–190.

    Google Scholar 

  105. Uysal, Z., Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas, Deep Sea Res., Part II, 2006, vol. 53, pp. 1976–1987.

    Google Scholar 

  106. Wasmund, N., Busch, S., Göbel, J., et al., Cyanobacteria biomass, 1990−2016, HELCOM Baltic Sea Environment Fact Sheet 2017. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacteria-biomass. Accessed February 17, 2019.

  107. West, N.J., Parrot, D., Fayet, C., et al., Marine cyanolichens from different littoral zones are associated with distinct bacterial communities, PeerJ, 2018, vol. 6, art. ID e5208. https://doi.org/10.7717/peerj.5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yadav, S., Sinha, R.P., and Tyagi, M., Antimicrobial activity of some cyanobacteria, Int. J. Pharm. Pharm. Sci., 2012, no. 4, pp. 631–635.

  109. Żak, A., Musiewicz, K., and Kosakowska, A., Allelopathic activity of the Baltic cyanobacteria against microalgae, Estuarine, Coastal Shelf Sci., 2012, vol. 112, pp. 4–10.

  110. Zubkov, M.V., Photoheterotrophy in marine prokaryotes, J. Plankton Res., 2009, vol. 31, no. 9, pp. 933–938.

    CAS  Google Scholar 

Download references

Funding

This work was carried out under the state assignment project of the Institute of Natural and Technical Systems in Sevastopol (no. AAAA-A19-119031490078-9) and the Kovalevsky Institute of Biology of Southern Seas (no. AAAA-A18-118021490093-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Andreeva, V. V. Melnikov or D. D. Snarskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by T. Koznova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, N.A., Melnikov, V.V. & Snarskaya, D.D. The Role of Cyanobacteria in Marine Ecosystems. Russ J Mar Biol 46, 154–165 (2020). https://doi.org/10.1134/S1063074020030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074020030025

Keywords: