Author:
Abramov A. A.,Yukhno L. F.
Subject
Computational Mathematics
Reference6 articles.
1. A. A. Abramov and L. F. Yukhno, “Numerical Solution of the Cauchy Problem for the Painlevé I and II Equations,” Comput. Math. Math. Phys. 52, 321–329 (2012).
2. A. A. Abramov and L. F. Yukhno, “Numerical Solution of the Cauchy Problem for Painlevé III,” Differ. Equations 48, 909–918 (2012).
3. A. A. Abramov and L. F. Yukhno, “Numerical Solution of the Painlevé IV Equation,” Comput. Math. Math. Phys. 52, 1565–1573 (2012).
4. A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshenov, Painlevé Transcendents: The Riemann-Hilbert Approach (RKhD, Izhevsk, 2005; Am. Math. Soc., Providence, 2006).
5. N. P. Erugin, “Theory of Moving Singular Points of Second Order Equations I,” Differ. Uravn. 12, 387–416 (1976).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Open Problems for Painlevé Equations;Symmetry, Integrability and Geometry: Methods and Applications;2019-01-29
2. Solutions to the Painlevé V equation through supersymmetric quantum mechanics;Journal of Physics A: Mathematical and Theoretical;2016-07-13
3. A method for calculating the Painlevé transcendents;Applied Numerical Mathematics;2015-07
4. A method for the numerical solution of the Painlevé equations;Computational Mathematics and Mathematical Physics;2013-05
5. Numerical solution of the Painlevé VI equation;Computational Mathematics and Mathematical Physics;2013-02