A Proof of Bel’tyukov–Lipshitz Theorem by Quasi-Quantifier Elimination. II. The Main Reduction
-
Published:2021-10
Issue:4
Volume:54
Page:372-380
-
ISSN:1063-4541
-
Container-title:Vestnik St. Petersburg University, Mathematics
-
language:en
-
Short-container-title:Vestnik St.Petersb. Univ.Math.
Publisher
Pleiades Publishing Ltd
Subject
General Mathematics
Reference7 articles.
1. A. P. Bel’tyukov, “Decidability of the universal theory of natural numbers with addition and divisibility,” J. Sov. Math. 14, 1436–1444 (1980).
2. L. Lipshitz, “The Diophantine problem for addition and divisibility,” Trans. Am. Math. Soc. 235, 271–283 (1978). https://doi.org/10.1090/S0002-9947-1978-0469886-1
3. M. R. Starchak, “A proof of Bel’tyukov–Lipshitz theorem by quasi-quantifier elimination. I. Definitions and GCD-lemma,” Vestn. St. Petersburg Univ.: Math. 54, 264–272 (2021).
4. A. Lechner, J. Ouaknine, and J. Worrell, “On the complexity of linear arithmetic with divisibility,” in Proc. 30th Annual ACM/IEEE Symp. on Logic in Computer Science (LICS), Kyoto, Japan, July 6–10,
2015 (IEEE, Piscataway, N.J., 2015), pp. 667–676. https://doi.org/10.1109/LICS.2015.67.
5. J. von zur Gathen and M. Sieveking, “A bound on solutions of linear integer equalities and inequalities,” Proc. Am. Math. Soc. 72, 155–158 (1978). https://doi.org/10.2307/2042554