Uranyl(VI) complexes with alpha-substituted carboxylic acids in aqueous solution

Author:

Moll H.,Geipel G.,Reich T.,Bernhard G.,Fanghänel Th.,Grenthe I.

Abstract

Summary The complex formation in the binary uranium(VI)-glycolate, -α-hydoxyisobutyrate, -α-aminoisobutyrate systems in 1.0 M NaClO4 medium was studied by means of UV-vis, TRLFS, and EXAFS. An increase in absorption and a red shift of the spectra, 5 nm compared to the free UO2 2+, indicate a complex formation between UO2 2+ and α-substituted carboxylic acids already at pH 2. 1:1 complexes dominate the uranyl speciation in the glycolate, α-hydoxyisobutyrate, and α-aminoisobutyrate system at pH 2 and 3, respectively. At higher ligand concentrations a 1:2 complex between UO2 2+ and α-aminoisobutyric acid was observed. There is a very strong quenching of the U(VI) fluorescence in theuranyl–α-hydroxycarboxylate systems that can be quantitatively described by the Stern–Volmer equation. As a result of the strong quenching it is not possible to detect fluorescence spectra for these complexes using TRLFS. The UO2 2+(aq) concentration calculated from the Stern–Volmer equation was used to determine equilibrium constants which are in good agreement with those obtained by potentiometry and NMR spectroscopy. No quenching was observed in the α-aminoisobutyrate system and their fluorescence spectra could be deconvoluted into components for the different species present. The following stability constants result from our TRLFS experiments: a) for the glycolate system log β UO₂(HOCH₂COO)⁺=2.52±0.20, b) for the α-hydroxyisobutyrate system log β UO₂[HOC(CH₃)₂COO]⁺=3.40±0.21, and c) for the α-aminoisobutyrate system logβUO₂[NH₃C(CH₃)₂COO]²⁺=1.30±0.10 and log β UO₂[NH₃C(CH₃)₂COO]₂²⁺=2.07±0.25. An increase of the fluorescence intensity connected with a red shift of the fluorescence emission spectra was observed in the system uranyl–α-aminoisobutyric acid. Fluorescence lifetimes and spectra were obtained for UO2 2+, UO2[NH3C(CH3)2COO]2+, and UO2[NH3C(CH3)2COO]2 2+. Uranium L III-edge EXAFS measurements yielded an U-Oeq distance of 2.40 to 2.43 Å in the pH range from 2 to 4 in the α-hydroxyisobutyrate system showing a dominant bidentate coordination via the oxygens of the carboxylic group. Slightly shorter U-Oeq distances of 2.40 to 2.38 Å and no evidence for U-C distances around 2.90 Å in the glycolate system in this pH range may indicate a monodentate coordinated ligand via one oxygen from the carboxylic group. The decrease in the U-Oeq distance of the equatorial oxygens in both systems to 2.36-2.37 Å at pH values ≥5 is a strong indication for the formation of a chelate complex due to the deprotonation of the α-OH-group of the ligand. In the glycolate system in the pH range 5.5 to 11, the EXAFS spectrum showed evidence of U-U interaction at 3.81 Å indicating the formation of dimeric species.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3