Author:
Windt Laurent de,Schneider H.,Ferry C.,Catalette H.,Lagneau V.,Poinssot C.,Poulesquen A.,Jegou Christophe
Abstract
A physico-chemical model developed for spent fuel alteration was integrated in a global reactive transport model of a spent fuel disposal system, considering both decaying and stable isotopes, corroded steel canisters, bentonite backfills and a clayey host-rock. Fuel evolution took into account radiolytic-enhanced corrosion and long-term solubility-controlled dissolution as well as instantaneous release fractions. The calculations show that spent-fuel dissolution has no significant alteration effect on the near-field components except an oxidizing plume in the vicinity of the waste packages. The dissolved uranyl species, partly precipitate as schoepite on the fuel pellets, and partly diffuse in the near-field where magnetite and pyrite reduce U(VI) to yield uraninite precipitation. Under disposal conditions, preliminary calculations indicate that steel corrosion may generate sufficient dissolved hydrogen as to react with radiolytic oxidants and inhibit fuel dissolution. The formation of a protective schoepite layer could also reduce the alteration of fuel pellets. Radionuclides migration (Am, Cs, I) in the near-field is discussed in a second stage discriminating between sorption, precipitation and radioactive decay processes. The migration of Cs is translated in terms of cumulative activity profiles useful for integrated performance assessment.
Subject
Physical and Theoretical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献