Mechanical Properties of Nanomaterials Examined with a NI-AFM

Author:

Vehoff H.,Yang B.,Barnoush A.,Natter Harald,Hempelmann Rolf

Abstract

The mechanical properties and strain rate sensitivity of nanocrystalline nickel was studied as a function of grain size at different temperatures in tensile tests and with a nanoindenter in order to examine the different deformation mechanisms of nanocrystalline materials. The effect of lateral boundaries and hydrogen on the nucleation of dislocations was studied in detail. For the first time it was possible to observe the reduction of the dislocation nucleation stress on a nanoscale. In addition the experiments yielded, depending on temperature and strain rate, the strain rate sensitivity, the activation volume and the creep exponents as a function of stress and grain size. From the creep experiments the transition between grain boundary sliding and dislocation climb as a function of temperature was obtained. The strain rate jump tests gave extremely small activation volumes, nearly a factor of 100 smaller than in conventional nickel as a function of grain size. To help in understanding this behaviour the strain rate sensitivity of single grains was tested with a nanoindenter. The results clearly showed that the primary interaction of dislocations with grain boundaries is the reason for the observed strong rate effects and small activation volumes.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3