Shock-Tube Study of the Reactions of Hydrogen Atoms with Benzene and Phenyl Radicals

Author:

Giri Binod R.,Bentz Tobias,Hippler Horst,Olzmann Matthias

Abstract

Abstract The reactions of hydrogen atoms with phenyl radicals, H + C6H5 → products (1), and with benzene, H + C6H6 → products (2), have been studied behind reflected shock waves in the temperature range 1200–1350 K with argon as the bath gas. H-atom resonance absorption spectrometry at 121.6 nm was used as detection technique. Hydrogen atoms and phenyl radicals were produced by thermal decomposition of C2H5I and C6H5I, respectively. Low initial concentrations (~1012–1015 cm-3) were employed to suppress consecutive bimolecular reactions as far as possible.The rate coefficients were determined from fits of the H atom concentration-time profiles in terms of a small mechanism. For reaction (1), a temperature-independent rate coefficient k 1 = 1.3×10–10 cm3 s–1 was obtained at pressures around 1.3 bar. For the rate coefficient of reaction (2), the temperature dependence can be expressed as k 2(T) = 5.8×10–10 exp(–8107 K/T) cm3 s–1, and a pressure dependence was not observed between 1.3 and 4.3 bar. The uncertainties of k 1 and k 2 were estimated to be ±40%.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3