Algorithm for calculating neotectonic stresses in platform areas by the structural-geomorphological method

Author:

Rebetskiy Yu. L.1,Sim L. A.1,Marinin A. V.1

Affiliation:

1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Abstract

An algorithm for calculating stress values proposed here is based on the results of reconstruction performed by L.A. Sim’s structural-geomorphological method for platform areas. This method makes it possible to determine the orientation of the axes of principal stresses for the shear zones from the lineament analysis of satellite images and photographs and Gzovsky’s palette, and to identify the lineaments characterizing the basement active faults which are covered by sediments. It is proposed that the dataset obtained will be subjected to the algorithm of the second-stage method of Cataclastic Analysis of faulting displacements, in which the Mohr diagram is used to calculate the stress values normalized for the cohesion strength of the massif. The further determination of the cohesion strength and absolute stress values is based on the data for lithostatic pressure and fluid pressure in the fracture-pore space of the massif (either measured or prescriptive). The stress calculation algorithm was tested on a small area (60 square km of satellite imagery) near the territorial district of Seversk – the southern border of the West Siberian Platform. The calculations have shown that with the fluid pressure variations ranging from hydrostatic values to twice higher than those, the cohesion strength of a rock mass at the base of the sedimentary cover (500 m depth) is in the range of 41.0 to 16.8 bar, and the level of maximum tangential stresses lies in the range of 75 to 31 bar.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3