Depolymerization of tubulin as the main molecular mechanism of the cytotoxic and antitumor activity of pyrrole-containing heterocyclic compounds

Author:

Galembikova A. R.1ORCID,Dunaev P. D.1ORCID,Ivoilova T. V.1ORCID,Gilyazova A. I.1ORCID,Galyautdinova A. E.1ORCID,Mikheeva E. G.1ORCID,Zykova S. S.2ORCID,Igidov N. M.2ORCID,Kopnin P. B.3ORCID,Boichuk S. V.4ORCID

Affiliation:

1. Kazan State Medical University, Ministry of Health of Russia

2. Perm State Academy of Pharmacy, Ministry of Health of Russia

3. N.N. Blokhin National Medical Russian Research Center of Oncology, Ministry of Health of Russia

4. Kazan State Medical University, Ministry of Health of Russia; Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia; Division of Mecial and Biological Sciences, Tatarstan Academy of Sciences

Abstract

   Introduction. Microtubules are highly dynamic polymers of α, β-tubulin dimers involves in a broad spectrum of the processes, such as intracellular transport and cell proliferation. This makes them an attractive molecular target for anti-cancer therapies. Substances that affect the dynamic state of tubulin microtubules are known as the mitotic poisons that are effectiveand widely used in the chemotherapy of various tumors. Mitotic poisons are able to interfere with polymerization (stabilization) or depolymerization of tubulin, which in turn leads to the arrest of cells in the M-phase (named as a mitotic catastrophe) and their subsequent death via activation of apoptotic mechanisms. However, the effectiveness of MP-based therapies is gradually decreasing over the time due to development of multiple drug resistance mechanisms in cancer cells. Thus, development of novel compounds selectively targeting tubulin and effectively overcoming multiple drugresistance phenotype in cancer is an urgent need in current oncology.   Aim. To examine the cytotoxic and antitumor activities of several pyrrole-containing heterocyclic compounds (EPC-91, EPC-92 and PCA-93) against cancer cell lines with epithelial and mesenchymal origin, including those with multiple drug resistance phenotype.   Materials and methods. Studies were performed on parental human cancer cell lines – triple-negative breast cancer HCC1806, gastrointestinal stromal tumor GIST T-1, osteosarcoma SaOS-2, – sensitive to chemotherapy (paclitaxel, doxorubicin) and their resistant sublines (HCC1806 Tx-R, GIST T-1 Tx-R, SaOS-2 Dox-R), as well as on murine colorectal adenocarcinoma cell line Colon-26, exhibiting primary resistance to the aforementioned chemotherapeutic agents.   Results. The cytotoxic activities of EPC-91 and PCA-93 were due to their abilities to depolymerize tubulin. The results of immunofluorescence microscopy and Western blotting indicated that the compounds disrupt assembly of tubulin microtubules and prevent polymerization of α-tubulin in cancer cells. Inhibition of tubulin polymerizations led to significant increasein number of round-shaped and phospho-histone 3 (e. g. mitotic) cells, followed by their death through apoptosis. PCA-93 also exhibited potent anti-tumor effect against Colon-26 cells due to its anti-proliferative and proapoptotic activities.   Conclusion. The data shown here illustrates potent cytotoxic activities of EPC-91 and PCA-93 against multiple cancer cell lines in vitro including those with multiple drug resistance phenotype. Similarly, PCA-93 was found to be highly effective against Colon-26 cell in vivo, thereby illustrating the attractive platform for the development of novel pyrrole-based agents exhibiting potent anti-tumor activities.

Publisher

Publishing House ABV Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3