Optimized Neural Networks-PID Controller with Wind Rejection Strategy for a Quad-Rotor

Author:

Ben Jabeur Chiraz,Seddik Hassene

Abstract

In this paper a full approach of modeling and intelligent control of a four rotor unmanned air vehicle (UAV) known as quad-rotor aircraft is presented. In fact, a PID on-line optimized Neural Networks Approach (PID-NN) is developed to be applied to angular trajectories control of a quad-rotor. Whereas, PID classical controllers are dedicated for the positions, altitude and speed control. The goal of this work is to concept a smart Self-Tuning PID controller, for attitude angles control, based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking a desired trajectory.  Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind modeled and applied to the overall system. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regards to decision making facing disturbances. This technique offers some advantages over conventional control methods such as PID controller. Simulation results are founded on a comparative study between PID and PID-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior and stability. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, the proposed controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient face to turbulences in the form of wind disturbances.

Publisher

Universitas Muhammadiyah Yogyakarta

Subject

Artificial Intelligence,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Event-Triggered Prescribed Performance Control for Quadrotor Aggressive Flight;2024 IEEE 18th International Conference on Control & Automation (ICCA);2024-06-18

2. On Automotive Electronic Throttle Valve Systems PID Control;2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2024-04-27

3. Dynamic Event-Triggered Prescribed Performance Robust Control for Aggressive Quadrotor Flight;Aerospace;2024-04-11

4. Dual Loop PIm PIn Control for an Aileron Positioning;IEEE Access;2024

5. Aerodynamics and Sensing Analysis for Efficient Drone-Based Parcel Delivery;2023 16th International Conference on Sensing Technology (ICST);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3