Analysis of the Physical and Radiobiological Equivalence of the Calculated and Measured Dose Distributions for Prostate Stereotactic Radiotherapy

Author:

Sukhikh E.12,Sukhikh L.3,Vertinsky A.43,Izhevsky P.5,Sheino I.5,Vertoukhova V.2

Affiliation:

1. Tomsk Regional Oncology Center

2. National Research Tomsk Polytechnic University, Tomsk, Russia

3. National Research Tomsk Polytechnic University

4. Tomsk Regional Oncology Centre

5. A.I. Burnasyan Federal Medical Biophysical Center of FMBA

Abstract

Purpose: Carrying out the analysis of the physical and radiobiological equivalence of dose distributions obtained during the planning of hypofractionated stereotactic radiation therapy of the prostate cancer and verification using a three-dimensional cylindrical dosimeter. Material and Methods: Based on the anatomical data of twelve patients diagnosed with prostate carcinoma, stage T2N0M0 with low risk, plans were developed for stereotactic radiation therapy with volumetric modulates arc therapy (VMAT). The dose per fraction was 7,25 Gy for 5 fractions (total dose 36,25 Gy) with a normal photon energy of 10 MV. The developed plans were verified using a three-dimensional cylindrical ArcCHECK phantom. During the verification process, the three-dimensional dose distribution in the phantom was measured, based on which the values of the three-dimensional gamma index and the dose–volume histogram within each contoured anatomical structures were calculated with 3DVH software. The gamma index value γ (3 %, 2 mm, GN) at a threshold equal to 20 % of the dose maximum of the plan and the percentage of coincidence of points at least 95 % was chosen as a criterion of physical convergence of the calculated and measured dose distribution according to the recommendations of AAPM TG-218. To analyze the radiobiological equivalence of the calculated and measured dose distribution, the local control probability (TCP) and normal tissue complication probability (NTCP) criteria were used based on the calculated and measured dose–volume histograms. Contours of the target (PTV) and the anterior wall of the rectum were used for the analysis. The approach based on the concept of equivalent uniform dose (EUD) by A. Niemierko was used to calculate the values of TCP/NTCP criteria. Results: The results of physical convergence of plans for all patients on the contour of the whole body were higher than 95 % for the criteria γ (3 %, 2 mm, GN). The convergence along the PTV contour is in the range (75.5–95.2)%. The TCP and NTCP values obtained from the measured dose-volume histograms were higher than the planned values for all patients. It was found that the accelerator delivered a slightly higher dose to the PTV and the anterior wall of the rectum than originally planned. Conclusion: The capabilities of modern dosimetric equipment allow us move to the verification of treatment plans based on the analysis of TCP / NTCP radiobiological equivalence, taking into account the individual characteristics of the patient and the capabilities of radiation therapy equipment.

Publisher

Infra-M Academic Publishing House

Subject

Nuclear Energy and Engineering

Reference16 articles.

1. Lo SS, Teh. BS, Lu JJ, et al. Stereotactic Body Radiation Therapy. Berlin Heidelberg, Springer-Verlag, 2012. 434 p. https://doi.org/10.1007/978-3-642-25605-9., Lo SS, Teh. BS, Lu JJ, et al. Stereotactic Body Radiation Therapy. Berlin Heidelberg, Springer-Verlag, 2012. 434 p. https://doi.org/10.1007/978-3-642-25605-9.

2. Ezzell GA, Burmeister JW, Dogan N, et al. IMRT Commissioning: Multiple Institution Planning and Dosimetry Comparisons. A Report from AAPM Task Group 119. Med. Phys. 2019;36 (XI):5359–5373., Ezzell GA, Burmeister JW, Dogan N, et al. IMRT Commissioning: Multiple Institution Planning and Dosimetry Comparisons. A Report from AAPM Task Group 119. Med. Phys. 2019;36 (XI):5359–5373.

3. Smilowitz JB, Das IJ, Feygelman V, et al. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations— Megavoltage Photon and Electron Beams. J Appl Clin Med Phys. 2015,16(V):14-34. DOI: 10.1120/jacmp.v16i5.5768., Smilowitz JB, Das IJ, Feygelman V, et al. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations— Megavoltage Photon and Electron Beams. J Appl Clin Med Phys. 2015,16(V):14-34. DOI: 10.1120/jacmp.v16i5.5768.

4. Miftena M, Olch A, Mihailidis D. Tolerance Limits and Methodologies for IMRT Measurement-Based Verification QA: Recommendations of AAPM Task Group No.218. Med. Phys. 2018;45(IV):e53-83., Miftena M, Olch A, Mihailidis D. Tolerance Limits and Methodologies for IMRT Measurement-Based Verification QA: Recommendations of AAPM Task Group No.218. Med. Phys. 2018;45(IV):e53-83.

5. Nelms BE, Opp D, Robinson J, et al. VMAT QA: Measurement-Guided 4D Dose Reconstruction on a Patient. Med. Phys. 2012;39(8):4228-4238., Nelms BE, Opp D, Robinson J, et al. VMAT QA: Measurement-Guided 4D Dose Reconstruction on a Patient. Med. Phys. 2012;39(8):4228-4238.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3