Affiliation:
1. Institute of Solar Terrestrial Physics SB RAS
Abstract
Fundamentals of the spherical harmonic analysis (SHA) of the geomagnetic field were created by Gauss. They acquired the classical Chapman — Schmidt form in the first half of the XXth century. The SHA method was actively developed for domestic geomagnetology by IZMIRAN, and then, since the start of the space age, by ISTP SB RAS, where SHA became the basis for a comprehensive method of MIT (magnetogram inversion technique). SHA solves the inverse problem of potential theory and calculates sources of geomagnetic field variations (GFV) - internal and external electric currents. The SHA algorithm forms a system of linear equations (SLE), which consists of 3K equations (three components of the geomagnetic field, K is the number of ground magnetic stations). Small changes in the left and (or) right side of such SLE can lead to a significant change in unknown variables. As a result, two consecutive instants of time with almost identical GFV are approximated by significantly different SHA coefficients. This contradicts both logic and real observations of the geomagnetic field. The inherent error of magnetometers, as well as the method for determining GFV, also entails the instability of SLE solution. To solve such SLEs optimally, the method of maximum contribution (MMC) was developed at ISTP SB RAS half a century ago. This paper presents basics of the original method and proposes a number of its modifications that increase the accuracy and (or) speed of solving the SLEs. The advantage of MMC over other popular methods is shown, especially for the Southern Hemisphere of Earth.
Publisher
Infra-M Academic Publishing House
Reference38 articles.
1. Базаржапов А.Д., Мишин В.М., Немцова Э.И., Платонов М.Л. Способ аналитического представления «мгновенных» полей магнитных вариаций // Геомагнитные исследования. 1966. № 8. С. 5–22., Akasofu S.-I. Physics of Magnetospheric Substorms. Dordrecht, Holland, Springer, 1977, 619 p. DOI: 10.1007/978-94-010-1164-8.
2. Базаржапов А.Д., Матвеев М.И., Мишин В.М. Геомагнитные вариации и бури. Новосибирск: Наука, 1979. 248 с., Backus G., Parker R.L., Constable C. Foundations of Geomagnetism. Cambridge, UK, Cambridge University Press, 1996, 369 p.
3. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. 7-е изд. М.: Высшая школа, 1998. 320 с., Barraclough D.R. Spherical harmonic models of the geomagnetic field. Geomagn. Bull. Inst. Geol. Sci. 1978, vol. 8, pp. 1–68.
4. Бенькова Н.П. Спокойные солнечно-суточные вариации земного магнетизма. Л.: Гидрометеоиздат, 1941. 76 с., Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnitnye variatsii i buri [Geomagnetic variations and storms]. Novosibirsk, Nauka Publ., 1979, 248 p. (In Russian).
5. Лунюшкин С.Б., Пенских Ю.В. Диагностика границ аврорального овала на основе техники инверсии магнитограмм // Солнечно-земная физика. 2019. Т. 5, № 2. С. 97–113. DOI: 10.12737/szf-52201913., Bazarzhapov A.D., Mishin V.M., Nemtsova E.I., Platonov M.L. The method of analytical presentation of “instant” fields of magnetic variations. Geomagnitnye issledovaniya [Geomagnetic Res.]. 1966, no. 8, pp. 5–22. (In Russian).