APPLYING THE METHOD OF MAXIMUM CONTRIBUTIONS TO THE MAGNETOGRAM INVERSION TECHNIQUE

Author:

Penskikh Yury1

Affiliation:

1. Institute of Solar Terrestrial Physics SB RAS

Abstract

Fundamentals of the spherical harmonic analysis (SHA) of the geomagnetic field were created by Gauss. They acquired the classical Chapman — Schmidt form in the first half of the XXth century. The SHA method was actively developed for domestic geomagnetology by IZMIRAN, and then, since the start of the space age, by ISTP SB RAS, where SHA became the basis for a comprehensive method of MIT (magnetogram inversion technique). SHA solves the inverse problem of potential theory and calculates sources of geomagnetic field variations (GFV) - internal and external electric currents. The SHA algorithm forms a system of linear equations (SLE), which consists of 3K equations (three components of the geomagnetic field, K is the number of ground magnetic stations). Small changes in the left and (or) right side of such SLE can lead to a significant change in unknown variables. As a result, two consecutive instants of time with almost identical GFV are approximated by significantly different SHA coefficients. This contradicts both logic and real observations of the geomagnetic field. The inherent error of magnetometers, as well as the method for determining GFV, also entails the instability of SLE solution. To solve such SLEs optimally, the method of maximum contribution (MMC) was developed at ISTP SB RAS half a century ago. This paper presents basics of the original method and proposes a number of its modifications that increase the accuracy and (or) speed of solving the SLEs. The advantage of MMC over other popular methods is shown, especially for the Southern Hemisphere of Earth.

Publisher

Infra-M Academic Publishing House

Reference38 articles.

1. Базаржапов А.Д., Мишин В.М., Немцова Э.И., Платонов М.Л. Способ аналитического представления «мгновенных» полей магнитных вариаций // Геомагнитные исследования. 1966. № 8. С. 5–22., Akasofu S.-I. Physics of Magnetospheric Substorms. Dordrecht, Holland, Springer, 1977, 619 p. DOI: 10.1007/978-94-010-1164-8.

2. Базаржапов А.Д., Матвеев М.И., Мишин В.М. Геомагнитные вариации и бури. Новосибирск: Наука, 1979. 248 с., Backus G., Parker R.L., Constable C. Foundations of Geomagnetism. Cambridge, UK, Cambridge University Press, 1996, 369 p.

3. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. 7-е изд. М.: Высшая школа, 1998. 320 с., Barraclough D.R. Spherical harmonic models of the geomagnetic field. Geomagn. Bull. Inst. Geol. Sci. 1978, vol. 8, pp. 1–68.

4. Бенькова Н.П. Спокойные солнечно-суточные вариации земного магнетизма. Л.: Гидрометеоиздат, 1941. 76 с., Bazarzhapov A.D., Matveev M.I., Mishin V.M. Geomagnitnye variatsii i buri [Geomagnetic variations and storms]. Novosibirsk, Nauka Publ., 1979, 248 p. (In Russian).

5. Лунюшкин С.Б., Пенских Ю.В. Диагностика границ аврорального овала на основе техники инверсии магнитограмм // Солнечно-земная физика. 2019. Т. 5, № 2. С. 97–113. DOI: 10.12737/szf-52201913., Bazarzhapov A.D., Mishin V.M., Nemtsova E.I., Platonov M.L. The method of analytical presentation of “instant” fields of magnetic variations. Geomagnitnye issledovaniya [Geomagnetic Res.]. 1966, no. 8, pp. 5–22. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3