Dromedary Milk Protein Hydrolysates Show Enhanced Antioxidant and Functional Properties

Author:

Oussaief Olfa1ORCID,Jrad Zeineb1ORCID,Adt Isabelle2ORCID,Khorchani Touhami1ORCID,El-Hatmi Halima3

Affiliation:

1. Livestock and Wildlife Laboratory, Arid Lands Institute, University of Gabes, 4119 Medenine, Tunisia

2. University of Lyon, University Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d’Accueil n°3733, rue Henri de Boissieu, 01000 Bourg en Bresse, France

3. Department of Food, High Institute of Applied Biology, University of Gabes, 4119 Medenine, Tunisia

Abstract

Research background. Milk protein hydrolysates have received particular attention due to their health-promoting effects. Dromedary milk differs from the milk of other dairy animals in the composition and structure of its protein components, which give it unique properties. The bioactivity and functionality of whole dromedary milk proteins and their enzymatic hydrolysates have not received much attention, hence this study aims to investigate the effect of enzymatic hydrolysis of dromedary milk proteins on their antioxidant activities and functional properties. Experimental approach. Dromedary milk proteins were treated using four proteolytic enzymes (pepsin, trypsin, α-chymotrypsin and papain) and two mixtures of enzymes (pancreatin and pronase). The degree of hydrolysis was measured to verify the hydrolysis of the proteins. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography served to determine the molecular mass distribution of the hydrolysates while reversed phase-high performance liquid chromatography (RP-HPLC) was conducted to explore their hydrophobicity. The antioxidant activities were evaluated using various in vitro tests, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging capacities, iron(III) reducing ability and chelating activity. Besides, functional properties such as solubility, foaming and emulsification were assessed. Results and conclusions. Dromedary milk protein hydrolysates exhibited different degrees of hydrolysis ranging from 17.69 to 41.86 %. Apart from that, the hydrolysates showed different electrophoretic patterns, molecular mass distribution and RP-HPLC profiles demonstrating the heterogeneity of the resulting peptides in terms of molecular mass and polarity. The hydrolysates displayed significantly higher antioxidant capacities than the undigested proteins at all the tested concentrations. Iron(II) chelating activity was the most improved assay after proteolysis and the hydrolysate generated with pancreatin had the highest chelating power. Dromedary milk protein hydrolysates possessed good solubility (>89 %). Further, foaming and emulsifying properties of dromedary milk proteins were enhanced after their proteolysis. These interfacial properties were influenced by the enzymes employed during proteolysis. Novelty and scientific contribution. Enzymatic hydrolysis of dromedary milk proteins is an effective tool to obtain protein hydrolysates with great antioxidant and functional properties. These results suggest that dromedary milk protein hydrolysates could be used as a natural source of antioxidant peptides to formulate functional foods and nutraceuticals.

Publisher

Faculty of Food Technology and Biotechnology - University of Zagreb

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3