Automated Disaster Monitoring from Social Media Posts using AI based Location Intelligence and Sentiment Analysis

Author:

Sufi Dr. Fahim,Khalil Ibrahim

Abstract

<p>Worldwide disasters like bushfires, earthquakes, floods, cyclones, heatwaves etc. have affected the lives of social media users in an unprecedented manner. They are constantly posting their level of negativity over the disaster situations at their location of interest. Understanding location-oriented sentiments about disaster situation is of prime importance for political leaders, and strategic decision-makers. To this end, we present a new fully automated algorithm based on artificial intelligence (AI) and Natural Language Processing (NLP), for extraction of location-oriented public sentiments on global disaster situation. We designed the proposed system to obtain exhaustive knowledge and insights on social media feeds related to disaster in 110 languages through AI and NLP based sentiment analysis, named entity recognition (NER), anomaly detection, regression, and Getis Ord Gi* algorithms. We deployed and tested this algorithm on live</p> <p>Twitter feeds from 28 September 2021 till 6 October 2021. Tweets with 67,515 entities in 39 different languages were processed during this period. Our novel algorithm extracted 9727 location entities with greater than 70% confidence from live twitter feed and displayed the locations of possible disasters with disaster intelligence. The rates of average precision, recall and F1-Score were measured to be 0.93, 0.88 and 0.90 respectively. Overall, the fully automated disaster monitoring solution demonstrated 97% accuracy. According to the best of our knowledge, this study is the first to report location intelligence with NER, sentiment analysis, regression and anomaly detection on social media messages related to disasters and has covered the largest set of languages.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3