Carbon Nanotube (CNTs): Structure, Synthesis, Purification, Functionalisation, Pharmacology, Toxicology, Biodegradation and Application as Nanomedicine and Biosensor

Author:

Patel JayendrakumarORCID,Parikh Shalin,Patel Shwetaben,Patel Ronak,Patel Payalben

Abstract

It is well acknowledged that carbon nanotubes (CNTs) are a potential new class of nanomaterials for technological advancement. The recent discovery of diverse kinds of carbon nanostructures has sparked interest in the potential applications of these materials in a variety of disciplines. Numerous distinct carbon nanotube (CNT) production methods have been developed, and their characterisation, separation, and manipulation of individual CNTs are now possible. Structure, surface area, surface charge, size distribution, surface chemistry, aggregation state, and purity of the samples all have a significant impact on the reactivity of carbon nanotubes, as does the purity of the samples. Currently, carbon nanotubes (CNTs) are being successfully used in the medicinal, pharmaceutical, and biomedical fields because of their large surface area, which makes them capable of adsorbing or conjugating with a wide range of therapeutic and diagnostic substances (drugs, genes, vaccines, antibodies, biosensors, etc.). They were the first to demonstrate that they are a great vehicle for drug delivery straight into cells without the need for metabolic processing by the body. This paper discusses the different types, structures, and properties of CNTs, as well as CNT synthesis and purification methods, how to functionalize CNTs, and their application in medicinal, pharmaceutical, and biomedical fields, toxicological properties and their assessment, as well as in-vivo pharmacology and biodegradation pathways.

Publisher

The Journal of Pharmaceutical Sciences and Medicinal Research

Reference129 articles.

1. S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.

2. R. Hirlekar, M. Yamagar, H. Garse, M. Vij, and V. Kadam, "Carbon nanotubes and its applications: a review," Asian Journal of Pharmaceutical and Clinical Research, vol. 2, no. 4, pp. 17-27, 2009.

3. B. G. P. Singh, C. Baburao, V. Pispati et al., "Carbon nanotubes. A novel drug delivery system," International Journal of Research in Pharmacy and Chemistry, vol. 2, no. 2, pp. 523-532, 2012.

4. Hua He, Lien Ai Pham-Huy, Pierre Dramou, Deli Xiao, Pengli Zuo, Chuong Pham-Huy, "Carbon Nanotubes: Applications in Pharmacy and Medicine", BioMed Research International, vol. 2013. https://doi.org/10.1155/2013/578290

5. Y. Zhang, Y. Bai, and B. Yan, "Functionalized carbon nanotubes for potential medicinal applications," Drug Discovery Today, vol. 15, no. 11-12, pp. 428-435, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3