Artificial Neural Network-Based Prediction of Death Anxiety in HIV-Positive Cases through Social Support and Distress Tolerance

Author:

Asadi FaribaORCID,Bakhtiarpour SaeedORCID

Abstract

Background: Distress tolerance has increasingly been used as an important construct to develop a novel insight into the onset and persistence of psychological traumas as well as prevention and treatment. Objectives: The present study investigated the relationship between social support and distress tolerance with death anxiety using artificial neural networks (ANN) in human immunodeficiency virus (HIV)-positive cases. Methods: The research method was descriptive-correlational. The statistical population included all the HIV-positive cases of Ahvaz in 2021. The convenience sampling method was employed to select 91 participants as the research sample. The research instruments included the Death Anxiety Scale (DAS), the Social Support Survey (SSS), and the Distress Tolerance Scale (DTS). The Pearson correlation coefficient, simultaneous regression, and ANN were used for data analysis. Results: The mean and standard deviation (SD) of death anxiety, social support, and distress tolerance were 9.07 ± 2.76, 63.78 ± 18.05, and 37.49 ± 12.91, respectively. The results showed a negative correlation between death anxiety, social support, and distress tolerance. Also, there was a significant negative relationship between social support and death anxiety (β = -0.31, P < 0.001). There was also a significant negative relationship between distress tolerance and death anxiety in HIV-positive cases (β = -0.53, P < 0.001). Conclusions: It is now more necessary than ever before to consider the effects of social support and distress tolerance on death anxiety in HIV-positive cases. Apparently, their death anxiety is affected by other factors and their interactive effects.

Publisher

Briefland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3