Innovative Diagnostic Tool: Convolutional Neural Network for Early Fat Malabsorption Detection in Pediatric Patients with Chronic Diarrhea

Author:

Kıymık EmreORCID,Kıymık ErkanORCID,Basturk AhmetORCID

Abstract

Background: Chronic diarrhea in children poses a significant clinical challenge and can lead to adverse health outcomes. Among various causes, fat malabsorption is particularly concerning, as it may lead to inadequate nutrient absorption, malnutrition, and impaired growth. Prompt and precise diagnosis is crucial for implementing effective treatments. Objectives: The goal of this study is to utilize deep learning to create a superior diagnostic tool that exceeds traditional methods, facilitating the early identification of fat malabsorption in children suffering from chronic diarrhea. Methods: In a preliminary study involving 100 pediatric patients, 25 machine learning algorithms were evaluated. The convolutional neural network (CNN) was identified as the most effective and subsequently refined through hyperparameter tuning. Results: The CNN model exhibited exceptional performance, attaining a test accuracy of 97% and an area under the curve (AUC) score of 99.4%. These results underscore its reliability in accurately identifying cases of fat malabsorption. Conclusions: This research represents noteworthy progress in pediatric gastroenterology, merging deep learning techniques with medical expertise to develop a dependable and rapid diagnostic tool. This innovative method promises significant improvements in detecting fat malabsorption, potentially transforming clinical practices and enhancing patient outcomes in children with chronic diarrhea.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3