Genetic Variation and Phylogenetic Analysis of Influenza A/H3N2 Hemagglutinin Gene in Shiraz, Southern Iran: Implications for Influenza Control and Vaccine Development

Author:

Edalat FahimeORCID,Pirbonyeh NedaORCID,Sarvari JamalORCID,Arefinia NasirORCID,Kadivar Mohammad Rahim,Rashidi Omid,Moattari AfaghORCID

Abstract

Background: Variation in the hemagglutinin (HA) of influenza A/H3N2 can affect antigenicity and virulence, potentially leading to the emergence of vaccine escape variants and antigenic shift viruses. This study aimed to evaluate the genetic variation of the HA gene to enhance global influenza virus surveillance. Objectives: The primary objectives of this research included molecular characterization and phylogenetic analysis of the influenza A/H3N2 HA gene. Therefore, this research aimed to contribute valuable insights to influenza surveillance efforts on a global scale by identifying the variants associated with vaccine escape and antigenic shift. Methods: RNA extraction was performed on 300 nasopharyngeal swab samples from patients with influenza-like illness using a commercial kit. The presence of influenza A/H3N2 was determined using qRT-PCR. Subsequently, positive samples underwent HA gene amplification through RT-PCR using the Sanger method. Variability in HA immunological sites was compared with reference sequences, and genotype/subtype was determined. Alignment and phylogenetic analyses were conducted to construct a tree utilizing an optimal nucleotide substitution model Results: Among the 300 samples, 22 (7.33%) tested positive for influenza A/H3N2, with a male distribution of 13 cases. The mean age of the participants was 35 ± 2.40 years. The analysis of antigenic site mutations revealed significant variations (A, B, D, and E) in the HA gene, with major mutations at positions 140 and 186. Noteworthy mutations such as S159Y and the previously undocumented K83R substitution at antigenic site E. Phylogenetic analysis classified the A/H3N2 strain into clades 3C.2a and 3C.3. Conclusions: The identified mutations in the HA gene suggest potential changes in antigenicity, emphasizing their relevance to vaccine development and surveillance strategies. It is recommended that ongoing molecular investigations be conducted for effective influenza control; also, the ongoing need to monitor influenza viruses is suggested to be highlighted. This research provides valuable insights necessary for maintaining efficient influenza control measures globally.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3