Comparison of High-resolution Melting Curve Analysis with Specific Target Gene Sequencing to Identify the Most Common Species of Aspergillus and Fusarium

Author:

Shirvani Fariba,Yassin Zeynab,Erami Mahzad,Lotfali EnsiehORCID,Ghasemi RezaORCID,Fattahi AzamORCID

Abstract

Background: Currently, it appears that new molecular-based methods could substitute microscopic and culture assessment for the first-line detection of microorganisms isolated from clinical specimens. However, it will remain the "continual strategy" until this technology is attuned to identifying all fungi that can be isolated from biological specimens. Objectives: The present study aimed to validate a high-resolution melting (HRM) technique to identify clinical filamentous fungi. Moreover, it was attempted to compare the results with those of the target gene’s polymerase chain reaction (PCR) sequencing. Methods: A total of 54 specimens of bronchoalveolar lavage (BAL), nail, ear discharge, blood culture, and cornea were collected from patients suspected of fungal infection. All Fusarium spp. and Aspergillus spp. were recognized based on Tef-α and beta-tubulin region sequencing, as well as PCR-HRM analysis. Results: The Tef-α sequence analysis revealed the most frequent spp. to be Fusarium solani followed by F. oxysporum (n = 3), F. caucasicum (n = 3), F. coeruleum (n = 3), F. falciforme (n = 1), F. proliferatum (n = 1), F. brevicatenulatum (n = 1), F. globosom (n = 1), and F. verticillioides (n = 1). Based on the beta-tubulin sequences, Aspergillus flavus (n = 10), A. fumigatus (n = 7), A. niger (n = 2), A. terreus (n = 1), and A. orezea (n = 1) were identified in this study. Furthermore, the dataset analysis of PCR-HRM revealed that 33 isolates belonging to Fusarium spp. were F. solani (n = 24), F. oxysporum (n = 3), F. proliferatum (n = 3), F. falciforme (n = 1), F. verticillioides (n = 1), and F. brevicatenulatum (n = 1). Moreover, isolates (n = 21) belonging to Aspergillus spp. included A. flavus (n = 11), A. fumigatus (n = 7), A. niger (n = 2), and A. terreus (n = 1). Conclusions: The sequencing method has a time-consuming and costly nature, and there exists conformity between the sequence results of the Tef-α/beta-tubulin regions and PCR-HRM. The PCR-HRM method is a reliable approach in the clinical laboratory to identify Aspergillus and Fusarium spp. However, some closely related spp. show no curve algorithm differences in PCR-HRM.

Publisher

Briefland

Subject

Infectious Diseases,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3