Evaluation of Various Machine Learning Methods to Predict Istanbul’s Freshwater Consumption

Author:

HEKİMOĞLU Mustafa1ORCID,ÇETİN Ayşe İrem1ORCID,KAYA Burak Erkan1ORCID

Affiliation:

1. KADIR HAS UNIVERSITY, FACULTY OF ENGINEERING AND NATURAL SCIENCES, DEPARTMENT OF INDUSTRIAL ENGINEERING

Abstract

Planning, organizing, and managing water resources is crucial for urban areas and metropolitans. Istanbul is one of the largest megacities, with a population of over 15 million. The large volume of water demand and increasing scarcity of clean water resources make long-term planning necessary for this city, as sustained water supply requires large-scale investment projects. Successful investment plans require accurate projections and forecasting for freshwater demand. This study considers different machine learning methods for freshwater demand forecasting for Istanbul. Using monthly consumption data provided by the municipality since 2009, we compare forecasting accuracies of ARIMA, Holt-Winters, Artificial Neural Networks, Recursive Neural Networks, Long-Short Term Memory, and Simple Recurrent Neural Network models. We find that the monthly freshwater demand of Istanbul is best predicted by Multi-Layer Perceptron and Seasonal ARIMA. From the predictive modeling perspective, this result is another indication of the combined usage of conventional forecasting models and novel machine learning techniques to achieve the highest forecasting accuracy.

Publisher

International Journal of Environment and Geoinformatics

Subject

General Arts and Humanities

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3