INVESTIGATION OF THE INFLUENCE OF THE CAPILLARY STRUCTURE OF A THERMOSIPHON ON ITS THERMAL POWER WITH HEAT CARRIERS R134a, R410a, R407c

Author:

Timofeev A.1

Affiliation:

1. Saint-Petersburg State University of Architecture and Construction

Abstract

Thermosiphon (TC) is an evaporative-condensing heat exchange device, where the circulation of the working fluid (intermediate coolant) is carried out due to gravitational forces. There is no porous wick in thermosiphons, it is replaced by grooves of various geometric shapes. Structurally, thermosiphons are made in the form of hermetically sealed and elongated cylindrical vessels, the inner volume of which is filled with a working fluid. Liquid heat carriers are used as the working fluid, which can perform an aggregate-phase transition at operating temperatures observed during operation in a recuperative heat exchanger. In this article, author is talking about comparing the limits of thermal power of thermosiphons operating at operating temperatures of ventilation and air conditioning systems. At the same time, thermosiphons use freons R134a, R410a, R407c as the working medium, and the capillary structure of thermosiphons is represented in the form of grooves of the following types: a Ω –shaped groove, a rectangular groove and a triangular groove. For comparison, a thermosiphon with an outer diameter of 8 mm is used. The dependences of the thermal power on the operating temperature for all types of limitations of the heat transfer capacity of thermosiphons are presented, depending on the capillary structure used and the working fluid. The analysis of the best capillary structure of thermosiphons when using freons as a working body is carried out.

Publisher

BSTU named after V.G. Shukhov

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference20 articles.

1. Тимофеев А.В., Яковлев В.А Совершенствование конструкции теплоутилизатора на тепловых трубах на основании результатов CFD – моделирования // Вестник гражданских инженеров. 2021. №3(86). С. 113–119., Timofeev A.V., Yakovlev V.A. Improving the design of a heat exchanger on heat pipes based on the results of CFD modeling [Sovershenstvovanie konstrukcii teploutilizatora na teplovyh trubah na osnovanii rezul'tatov CFD – modelirovaniya]. Bulletin of Civil Engineers. 2021. No. 3(86). Pp. 113–119. (rus)

2. Sangpab N., Phrut S., Niti K., Pradit T. Mathematical model of bent-flattened sintered-grooved heat pipe with concept of receding-and-excessing fluid // Case Studies in Thermal Engineering. 2021. № 27. Pp. 1–16. doi:10.1016/j.csite.2021.101307., Sangpab N., Phrut S., Niti K., Pradit T. Mathematical model of bent-flattened sintered-grooved heat pipe with concept of receding-and-excessing fluid. Case Studies in Thermal Engineering. 2021. Vol. 27. Pp. 1–16. doi:10.1016/j.csite.2021.101307

3. Jouhara H., Bertrand D., Axcell B., Montorsi L., Venturelli M., Almahmoud S., Milani M., Ahmad L., Chauhan A. Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery // Energy. 2021. № 223. Pp. 1–23. https://doi.org/10.1016/j.energy.2021.120037., Jouhara H., Bertrand D., Axcell B., Montorsi L., Venturelli M., Almahmoud S., Milani M., Ahmad L., Chauhan A. Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery. Energy. 2021. Vol. 223. Pp. 1–23. doi:10.1016/j.energy.2021.120037.

4. Xu Z., Zhang Y., Li B., Huang J. Modeling the phase change process for a two-phase closed thermosyphon by considering transient mass transfer time relaxation parameter // International Journal of Heat and Mass Transfer. 2016. № 101. Pp. 614–619. doi:/10.1016/j.ijheatmasstransfer.2016.05.075., Xu Z., Zhang Y., Li B., Huang J. Modeling the phase change process for a two-phase closed thermosyphon by considering transient mass transfer time relaxation parameter. International Journal of Heat and Mass Transfer. 2016. Vol. 101. Pp. 614–619. doi:10.1016/j.ijheatmasstransfer.2016.05.075.

5. Чи С. Тепловые трубы: теория и практика пер. В.Я. Сидорова. М.: Машиностроение, 1981. 207 с., Chi S. W. Heat pipe: Theory and practice [Teplovye truby: teoriya i praktika per. V.YA. Sidorova]. The George Washington University. London. 1981. 207 p. (rus)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3