Temporal interaction and its role in the evolution of cooperation

Author:

He Yujie1,Ren Tianyu2ORCID,Zeng Xiao-Jun2,Liang Huawen3,Yu Liukai4,Zheng Junjun4

Affiliation:

1. Institute of Development

2. The University of Manchester

3. University of Science and Technology of China

4. Wuhan University

Abstract

This research investigates the impact of dynamic, time-varying interactions on cooperative behavior in social dilemmas. Traditional research has focused on deterministic rules governing pairwise interactions, yet the impact of interaction frequency and synchronization in groups on cooperation remains underexplored. Addressing this gap, our work introduces two temporal interaction mechanisms to model the stochastic or periodic participation of individuals in public goods games, acknowledging real-life variances due to exogenous temporal factors and geographical time differences. We consider that the interaction state significantly influences both game payoff calculations and the strategy updating process, offering new insights into the emergence and sustainability of cooperation. Our results indicate that maximum game participation frequency is suboptimal under a stochastic interaction mechanism. Instead, an intermediate activation probability maximizes cooperation, suggesting a vital balance between interaction frequency and inactivity security. Furthermore, local synchronization of interactions within specific areas is shown to be beneficial, as time differences hinder the spread of cross-structures but promote the formation of dense cooperative clusters with smoother boundaries. We also note that stronger clustering in networks, larger group sizes, and lower noise increase cooperation. This research contributes to understanding the role of node-based temporality and probabilistic interactions in social dilemmas, offering insights into fostering cooperation. Published by the American Physical Society 2024

Funder

National Natural Science Foundation of China

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3