Production of ultralight dark matter from inflationary spectator fields

Author:

Belfiglio Alessio12,Luongo Orlando12345ORCID

Affiliation:

1. University of Camerino

2. Istituto Nazionale di Fisica Nucleare (INFN)

3. SUNY Polytechnic Institute

4. Osservatorio Astronomico di Brera

5. Al-Farabi Kazakh National University

Abstract

We investigate inflationary particle production associated with a spectator ultralight scalar field, which has recently been proposed as a plausible dark matter candidate. In this framework, we select the Starobinsky potential to drive the inflationary epoch, also discussing the case of a nonminimally coupled inflaton field fueled by a quartic symmetry-breaking potential. We focus on particle production arising from spacetime perturbations, which are induced by inflaton fluctuations during the quasi–de Sitter stage of inflation. In particular, we construct the first-order Lagrangian describing interaction between inhomogeneities and the spectator field, quantifying superhorizon particle production during slow-roll. We then compare this mechanism with gravitational particle production associated with an instantaneous transition from inflation to the radiation dominated era. We show that the number of particles obtained from perturbations is typically non-negligible, and it is significantly enhanced on super-Hubble scales by the nonadiabatic inflationary expansion. Possible implications for primordial entanglement generation are also debated. Published by the American Physical Society 2024

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3