Partial-wave projection of the one-particle exchange in three-body scattering amplitudes

Author:

Jackura Andrew W.1ORCID,Briceño Raúl A.2

Affiliation:

1. Department of Physics, William & Mary, Williamsburg, Virginia 23187, USA

2. Department of Physics, University of California, Berkeley, California 94720, USA and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract

As the study of three-hadron physics from lattice QCD matures, it is necessary to develop proper analysis tools in order to reliably study a variety of phenomena, including resonance spectroscopy and nuclear structure. Reconstructing the three-particle scattering amplitude requires solving integral equations, which can be written in terms of data-constrained dynamical functions and physical on shell quantities. The driving term in these equations is the so-called one-particle exchange, which leads to a kinematic divergence for particles on mass shell. A vital component in defining three-particle amplitudes with definite parity and total angular momentum, which are used in spectroscopic studies, is to project the one-particle exchange into definite partial waves. We present a general procedure to construct exact analytic partial-wave projections of the one-particle exchange contribution for any system composed of three spinless hadrons. Our result allows one full control over the analytic structure of the projection, which we explore for some low-lying partial waves with applications to three pions. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Nuclear Physics

Publisher

American Physical Society (APS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3