Memory burden effect in black holes and solitons: Implications for PBH

Author:

Dvali Gia12,Valbuena-Bermúdez Juan Sebastián34,Zantedeschi Michael56ORCID

Affiliation:

1. Ludwig-Maximilians-Universität

2. Max-Planck-Institut für Physik

3. Institut de Física d’Altes Energies (IFAE)

4. Campus UAB

5. Tsung-Dao Lee Institute (TDLI), No. 1 Lisuo Road, 201210 Shanghai, China

6. Shanghai Jiao Tong University

Abstract

The essence of the memory burden effect is that a load of information carried by a system stabilizes it. This universal effect is especially prominent in systems with a high capacity of information storage, such as black holes and other objects with maximal microstate degeneracy, the entities universally referred to as “saturons.” The phenomenon has several implications. The memory burden effect suppresses a further decay of a black hole, the latest, after it has emitted about half of its initial mass. As a consequence, the light primordial black holes that previously were assumed to be fully evaporated are expected to be present as viable dark matter candidates. In the present paper, we deepen the understanding of the memory burden effect. We first identify various memory burden regimes in generic Hamiltonian systems and then establish a precise correspondence in solitons and in black holes. We make transparent, at a microscopic level, the fundamental differences between the stabilization by a quantum memory burden versus the stabilization by a long-range classical hair due to a spin or an electric charge. We identify certain new features of potential observational interest, such as the model-independent spread of the stabilized masses of initially degenerate primordial black holes. Published by the American Physical Society 2024

Funder

Alexander von Humboldt-Stiftung

HORIZON EUROPE European Research Council

Deutsche Forschungsgemeinschaft

Cardio-Pulmonary Institute

Generalitat de Catalunya

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

European Commission

National Natural Science Foundation of China

Germany’s Excellence Strategy

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3