Actin Filament Barbed-End Depolymerization by Combined Action of Profilin, Cofilin, and Twinfilin

Author:

Arya Ankita1ORCID,Choubey Sandeep23ORCID,Shekhar Shashank1ORCID

Affiliation:

1. Emory University

2. The Institute of Mathematical Sciences

3. Homi Bhabha National Institute

Abstract

Cellular actin dynamics results from the collective action of hundreds of regulatory proteins, majority of which target actin filaments at their barbed ends. Three key actin binding proteins—profilin, cofilin, and twinfilin—individually depolymerize filament barbed ends. Notwithstanding recent leaps in our understanding of their individual action, how they collectively regulate filament dynamics remains an open question. In the absence of direct and simultaneous visualization of these proteins at barbed ends, gaining mechanistic insights has been challenging. We have here investigated multicomponent dynamics of profilin, cofilin, and twinfilin using a hybrid approach that combines high-throughput single filament experiments with theory. We discovered that while twinfilin competes with profilin, it promotes binding of cofilin to filament sides. Interestingly, contrary to previous expectations, we found that profilin and cofilin can simultaneously bind the same filament barbed end, resulting in its accelerated depolymerization. Our study reveals that pairwise interactions can effectively capture depolymerization dynamics in simultaneous presence of all three proteins. We thus believe that our approach of employing a theory-experiment dialog can potentially help decipher multicomponent regulation of actin dynamics. Published by the American Physical Society 2024

Funder

Department of Biotechnology, Ministry of Science and Technology, India

National Institutes of Health

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3