Learning Quantum Processes Without Input Control

Author:

Fanizza Marco12ORCID,Quek Yihui345ORCID,Rosati Matteo67ORCID

Affiliation:

1. Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física

2. Universitat Autònoma de Barcelona

3. Dahlem Center for Complex Quantum Systems

4. Freie Universität Berlin

5. Massachusetts Institute of Technology

6. Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche

7. Università Roma Tre

Abstract

We introduce a general statistical learning theory for processes that take as input a classical random variable and output a quantum state. Our setting is motivated by the practical situation in which one desires to learn a quantum process governed by classical parameters that are out of one’s control. This framework is applicable, for example, to the study of astronomical phenomena, disordered systems and biological processes not controlled by the observer. We provide an algorithm for learning with high probability in this setting with a finite amount of samples, even if the concept class is infinite. To do this, we review and adapt existing algorithms for shadow tomography and hypothesis selection, and combine their guarantees with the uniform convergence on the data of the loss functions of interest. As a byproduct, we obtain sufficient conditions for performing shadow tomography of classical-quantum states with a number of copies, which depends on the dimension of the quantum register, but not on the dimension of the classical one. We give concrete examples of processes that can be learned in this manner, based on quantum circuits or physically motivated classes, such as systems governed by Hamiltonians with random perturbations or data-dependent phase shifts. Published by the American Physical Society 2024

Funder

MICINN

Spanish Agencia Estatal de Investigación

ERDF

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3