Solving Boolean Satisfiability Problems With The Quantum Approximate Optimization Algorithm

Author:

Boulebnane Sami1,Montanaro Ashley1

Affiliation:

1. Phasecraft Ltd.

Abstract

One of the most prominent application areas for quantum computers is solving hard constraint satisfaction and optimization problems. However, detailed analyses of the complexity of standard quantum algorithms have suggested that outperforming classical methods for these problems would require extremely large and powerful quantum computers. The quantum approximate optimization algorithm (QAOA) is designed for near-term quantum computers, yet previous work has shown strong limitations on the ability of QAOA to outperform classical algorithms for optimization problems. Here we instead apply QAOA to hard constraint satisfaction problems, where both classical and quantum algorithms are expected to require exponential time. We analytically characterize the average success probability of QAOA on a constraint satisfaction problem commonly studied using statistical physics methods: random k-SAT at the threshold for satisfiability, as the number of variables n goes to infinity. We complement these theoretical results with numerical experiments on the performance of QAOA for small n, which match the limiting theoretical bounds closely. We then compare QAOA with leading classical solvers. For random 8-SAT, we find that for more than 14 quantum circuit layers, QAOA achieves more efficient scaling than the highest-performance classical solver we tested, WalkSATlm. Our results suggest that near-term quantum algorithms for solving constraint satisfaction problems may outperform their classical counterparts. Published by the American Physical Society 2024

Funder

European Research Council

EPSRC Centre for Doctoral Training in Delivering Quantum Technologies

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3