Thermally induced localization of dopants in a magnetic spin ladder

Author:

Nielsen K. Knakkergaard1ORCID

Affiliation:

1. Max-Planck Institute for Quantum Optics

Abstract

I unveil an emergent localization phenomenon pertaining to the motion of a dopant in a thermal spin lattice. This is rendered localized by thermal spin fluctuations, whereby it is in stark constrast to the intrinsic origin of Anderson localization for quenched disorder. The system of interest consists of spin-1/2 particles organized in a two-leg ladder with nearest-neighbor Ising interactions J. The motion of a hole—the dopant—is initialized by suddenly removing a spin from the thermal spin ensemble, which then moves along the ladder via nearest-neighbor hopping t. I find that the hole remains for all values of J/t and for nonzero temperatures. The origin is an effective disorder potential seen by the hole and induced by thermal spin fluctuations. Its length scale is found to match with the underlying spin-spin correlation length at low temperatures. For ferromagnetic couplings (J<0), the associated localization length of the hole increases with decreasing temperature and becomes proportional to the correlation length at low temperatures, asymptotically delocalizing at low temperatures. For antiferromagnetic couplings (J>0), there is a smooth crossover between thermal localization at high temperatures to localization driven by the antiferromagnetic order at low temperatures. At infinite temperatures, the dynamics becomes independent of the sign of the spin coupling, whereby the localization length is a universal function of |J|/t, diverging as (t/J)2 for |J|t. Finally, I analyze a setup with Rydberg-dressed atoms, which naturally realizes finite-range Ising interactions, accessible in current experimental setups. I show that the discovered localization phenomenon can be probed on experimentally accessible length- and timescales, providing a strong testing ground for my predictions. Published by the American Physical Society 2024

Funder

Carlsbergfondet

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3