Quantum metric of non-Hermitian Su-Schrieffer-Heeger systems

Author:

Chen Ye Chao12ORCID,Vleeshouwers W. L.13,Heatley S.3ORCID,Gritsev V.3,Morais Smith C.1ORCID

Affiliation:

1. Institute for Theoretical Physics, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, Netherlands

2. Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

3. Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1098 XH Amsterdam, The Netherlands

Abstract

Topological insulators have been studied intensively over the last decades. Earlier research focused on Hermitian Hamiltonians, but recently, peculiar and interesting properties were found by introducing non-Hermiticity. In this work, we apply a quantum geometric approach to various Hermitian and non-Hermitian versions of the Su-Schrieffer-Heeger (SSH) model. We find that this method allows one to correctly identify different topological phases and topological phase transitions for all SSH models, but only when using the metric tensor containing both left and right eigenvectors. Whereas the quantum geometry of Hermitian systems is Riemannian, introducing non-Hermiticity leads to pseudo-Riemannian and complex geometries, thus significantly generalizing from the quantum geometries studied thus far. One remarkable example of this is the mathematical agreement between topological phase transition curves and lightlike paths in general relativity, suggesting a possibility of simulating space-time in non-Hermitian systems. We find that the metric in non-Hermitian phases degenerates in such a way that it effectively reduces the dimensionality of the quantum geometry by one. This implies that within linear response theory, one can perturb the system by a particular change of parameters while maintaining a zero excitation rate. Published by the American Physical Society 2024

Funder

Ministerie van Onderwijs, Cultuur en Wetenschap

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological analysis of the complex SSH model using the quantum geometric tensor;Journal of Physics A: Mathematical and Theoretical;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3