Weyl fermion excitations in the ideal Weyl semimetal CuTlSe2

Author:

Wang C. N.1ORCID,Tay D.2ORCID,Dong Q. X.3,Okvátovity Z.44,Huddart B. M.5ORCID,Ma C. Y.3,Yokoyama K.6ORCID,Yu L.3,Lancaster T.5ORCID,Chen G. F.3,Ott H.-R.2,Shiroka T.27ORCID

Affiliation:

1. University of Fribourg

2. ETH Zürich

3. Institute of Physics, Chinese Academy of Sciences

4. Budapest University of Technology and Economics

5. Durham University

6. ISIS Pulsed Neutron and Muon Source

7. Paul Scherrer Institut

Abstract

An ideal Weyl semimetal is characterized by a dispersion in which only Weyl cones intersect the Fermi level, with low-energy behavior being governed by Weyl fermions. Although ideal Weyl semimetals have long been anticipated, only a few are realized in nonmagnetic materials. In this study, we confirm the presence of Weyl-fermion excitations in the ideal Weyl semimetal CuTlSe2 via a combination of magnetoresistance, Hall-effect, magnetic-susceptibility, nuclear magnetic resonance (NMR), and muon-spin relaxation (µSR) experiments. Magnetoresistance measurements reveal a negative longitudinal magnetoresistance (LMR), which scales as B2, while Hall-effect results indicate a predominant contribution from Weyl fermions with a hole-type charge. Magnetic susceptibility and µSR measurements indicate the lack of any intrinsic spontaneous magnetic moments down to base temperature. Finally, the NMR results can be modeled by a two-component effective Hamiltonian, which reproduces well the temperature-dependent Cu63 NMR (T1T)1 factor, shown to scale as T2 below 100 K and as T1 above 100 K. Overall, we find that the extremely low concentration (1017cm3) of carriers in CuTlSe2 originates from an ideal nonmagnetic Weyl semimetallic state, persisting up to a thermal excitation energy of 9 meV (100 K), above which trivial electronic bands close to EF take over. Our findings highlight CuTlSe2 as a new member of the intriguing class of Weyl semimetals. Published by the American Physical Society 2024

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Engineering and Physical Sciences Research Council

National Natural Science Foundation of China

Chinese Academy of Sciences

National Science and Technology Major Project

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3