Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses

Author:

Tosca M.123ORCID,Morace A.4,Schollmeier M.3ORCID,Steinke S.3,Shirvanyan V.3,Arikawa Y.4,Giuffrida L.1,Margarone D.15,Pleskunov P.2,Choukourov A.2ORCID,Whitney R. R.6,Scammell L. R.6ORCID,Korn G.13

Affiliation:

1. Extreme Light Infrastructure

2. Charles University

3. Marvel Fusion

4. Osaka University

5. Queen's University Belfast

6. BNNT Materials

Abstract

Enhancing laser energy absorption with energy transfer to fast electrons is crucial for efficient laser-driven ion acceleration. In this work, we present an experimental demonstration of volumetric laser absorption using boron nitride nanotube (BNNT) targets with an average density of 15 of the solid density. We use a PW laser system operating at a pulse duration of 1.2 ps and an energy of 1.3 kJ, reaching intensities of 2 × 1019 Wcm2 on target with moderate nanosecond contrast (109), to generate energetic ion streams from a 250 µm thick BNNT target. To characterize laser-accelerated ions, Thomson parabola spectrometers, CR-39 nuclear track detectors, and an electron spectrometer are employed. The results are compared to those achieved using flat targets made of polystyrene (PS) of the same thickness. The comparison reveals a 1.5-fold increase in proton maximum energy and a 2.5-fold increase in the maximum energy of heavy ions (C and N) when comparing the BNNT to PS. Moreover, the high-energy ion flux recorded at CR-39 is orders of magnitude higher for the BNNT after cutting off low-energy ions with Al filters. The enhanced ion acceleration is the result of a 2.3-fold increase in the electron temperature for BNNT, as measured by the electron spectrometer. These experimental findings are further validated through two-dimensional particle-in-cell simulations, which confirm the increase in electron temperature due to enhanced laser absorption ascribable to the low density and nanostructure of the BNNT target compared to the flat foil. Published by the American Physical Society 2024

Funder

Univerzita Karlova v Praze

Grantová Agentura České Republiky

European Regional Development Fund

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3