Accelerating analysis of Boltzmann equations using Gaussian mixture models: Application to quantum Bose-Fermi mixtures

Author:

Dolgirev Pavel E.1ORCID,Seetharam Kushal12ORCID,Kanász-Nagy Márton3ORCID,Robens Carsten2,Yan Zoe Z.4,Zwierlein Martin2,Demler Eugene5

Affiliation:

1. Harvard University

2. Massachusetts Institute of Technology

3. Max Planck Institute of Quantum Optics

4. University of Chicago

5. Institute for Theoretical Physics

Abstract

The Boltzmann equation is a powerful theoretical tool for modeling the collective dynamics of quantum many-body systems subject to external perturbations. Analysis of the equation gives access to linear response properties including collective modes and transport coefficients, but often proves intractable due to computational costs associated with multidimensional integrals describing collision processes. Here, we present a method to resolve this bottleneck, enabling the study of a broad class of many-body systems that appear in fundamental science contexts and technological applications. Specifically, we demonstrate that a Gaussian mixture model can accurately represent equilibrium distribution functions, thereby allowing efficient evaluation of collision integrals. Inspired by cold atom experiments, we apply this method to investigate the collective behavior of a quantum Bose-Fermi mixture of cold atoms in a cigar-shaped trap, a system that is particularly challenging to analyze. We focus on monopole and quadrupole collective modes above the Bose-Einstein transition temperature, and find a rich phenomenology that spans interference effects between bosonic and fermionic collective modes, dampening of these modes, and the emergence of hydrodynamics in various parameter regimes. These effects are readily verifiable experimentally. Published by the American Physical Society 2024

Funder

Army Research Office

National Science Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Air Force Office of Scientific Research

Multidisciplinary University Research Initiative

Deutsche Forschungsgemeinschaft

Munich Center for Quantum Science and Technology

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3