Detecting fractionalization in critical spin liquids using color centers

Author:

Takei So12ORCID,Tserkovnyak Yaroslav3ORCID

Affiliation:

1. Department of Physics

2. Physics Doctoral Program

3. Department of Physics and Astronomy and Bhaumik Institute for Theoretical Physics

Abstract

Quantum spin liquids are highly entangled ground states of insulating spin systems, in which magnetic ordering is prevented down to the lowest temperatures due to quantum fluctuations. One of the most extraordinary characteristics of quantum spin liquid phases is their ability to support fractionalized, low-energy quasiparticles known as spinons, which carry spin-1/2 but bear no charge. Relaxometry based on color centers in crystalline materials—of which nitrogen-vacancy (NV) centers in diamond are a well-explored example—provides an exciting new platform to probe the spin spectral functions of magnetic materials with both energy and momentum resolution and to search for signatures of these elusive, fractionalized excitations. In this work, we theoretically investigate the color-center relaxometry of two archetypal quantum spin liquids: the two-dimensional U(1) quantum spin liquid with a spinon Fermi surface and the spin-1/2 antiferromagnetic spin chain. The former is characterized by a metallic, spin-split ground state of mobile, interacting spinons, which closely resembles a spin-polarized Fermi liquid ground state but with neutral quasiparticles. We show that the observation of the Stoner continuum and the collective spin wave mode in the spin spectral function would provide a strong evidence for the existence of spinons and fractionalization. In one dimension, mobile spinons form a Luttinger liquid ground state. We show that the spin spectral function exhibits strong features representing the collective density and spin-wave modes, which are broadened in an algebraic fashion with an exponent characterized by the Luttinger parameter. The possibilities of measuring these collective modes and detecting the power-law decay of the spectral weight using NV relaxometry are discussed. We also examine how the transition rates are modified by marginally irrelevant operators in the Heisenberg limit. Published by the American Physical Society 2024

Funder

Research Foundation of The City University of New York

National Science Foundation

U.S. Department of Energy

Basic Energy Sciences

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3