Origin of symmetry breaking in the grasshopper model

Author:

Llamas David1,Kent-Dobias Jaron2ORCID,Chen Kun3,Kent Adrian45ORCID,Goulko Olga1ORCID

Affiliation:

1. University of Massachusetts Boston

2. Istituto Nazionale di Fisica Nucleare

3. Flatiron Institute

4. University of Cambridge

5. Perimeter Institute for Theoretical Physics

Abstract

The planar grasshopper problem, originally introduced by Goulko and Kent [], is a striking example of a model with long-range isotropic interactions whose ground states break rotational symmetry. In this paper we analyze and explain the nature of this symmetry breaking with emphasis on the importance of dimensionality. Interestingly, rotational symmetry is recovered in three dimensions for small jumps, which correspond to the nonisotropic cogwheel regime of the two-dimensional problem. We discuss simplified models that reproduce the symmetry properties of the original system in N dimensions. For the full grasshopper model in two dimensions we obtain quantitative predictions for optimal perturbations of the disk. Our analytical results are confirmed by numerical simulations. Published by the American Physical Society 2024

Funder

National Science Foundation

Institut Périmètre de physique théorique

Government of Canada

Ontario Ministry of Research, Innovation and Science

Simons Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3