Inferring potential landscapes: A Schrödinger bridge approach to maximum caliber

Author:

Movilla Miangolarra Olga1ORCID,Eldesoukey Asmaa1ORCID,Georgiou Tryphon T.1ORCID

Affiliation:

1. University of California, Irvine

Abstract

Schrödinger bridges have emerged as an enabling framework for unveiling the stochastic dynamics of systems based on marginal observations at different points in time. The terminology “bridge” refers to a probability law that suitably interpolates such marginals. The theory plays a pivotal role in a variety of contemporary developments in machine learning, stochastic control, thermodynamics, and biology, to name a few, impacting disciplines such as single-cell genomics, meteorology, and robotics. In this work, we extend Schrödinger's paradigm of bridges to account for integral constraints along paths, in a way akin to maximum caliber—a maximum entropy principle applied in a dynamic context. The maximum caliber principle has proven useful to infer the dynamics of complex systems, e.g., model gene circuits and protein folding. We unify these two problems via a maximum likelihood formulation to reconcile stochastic dynamics with ensemble-path data. A variety of data types can be encompassed, ranging from distribution moments to average currents along paths. The framework enables inference of time-varying potential landscapes that drive the process. The resulting forces can be interpreted as the optimal control that drives the system in a way that abides by specified integral constraints. This, in turn, relates to a similarly constrained optimal mass transport problem in the zero-noise limit. Analogous results are presented in a discrete-time, discrete-space setting and specialized to steady-state dynamics. We finish by illustrating the practical applicability of the framework through paradigmatic examples, such as that of bit erasure or protein folding. In doing so, we highlight the strengths of the proposed framework, namely, the generality of the theory, its elegant analytical structure, the ease of computation, and the ability to interpret results in terms of system dynamics. This is in contrast to maximum caliber problems where the focus is typically on updating a probability law on paths. Published by the American Physical Society 2024

Funder

Air Force Office of Scientific Research

Army Research Office

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3