Physical properties and electronic structure of the two-gap superconductor V2Ga5

Author:

Cheng P.-Y.112ORCID,Oudah Mohamed3,Hung T.-L.4ORCID,Hsu C.-E.5ORCID,Chang C.-C.1126ORCID,Haung J.-Y.7,Liu T.-C.7,Cheng C.-M.6892ORCID,Ou M.-N.4ORCID,Chen W.-T.10102ORCID,Deng L. Z.11ORCID,Lee C.-C.5ORCID,Chen Y.-Y.4,Kuo C.-N.12,Lue C.-S.12ORCID,Machts Janna312ORCID,Kojima Kenji M.33,Hallas Alannah M.3313ORCID,Huang C.-L.112ORCID

Affiliation:

1. National Cheng Kung University

2. National Science and Technology Council

3. University of British Columbia

4. Academia Sinica

5. Tamkang University

6. National Synchrotron Radiation Research Center (NSRRC)

7. National Tsing Hua University

8. National Sun Yat-sen University

9. National Yang Ming Chiao Tung University

10. National Taiwan University

11. University of Houston

12. University of Edinburgh

13. Canadian Institute for Advanced Research

Abstract

We present a thorough investigation of the physical properties and superconductivity of the binary intermetallic V2Ga5. Electrical resistivity and specific heat measurements show that V2Ga5 enters its superconducting state below Tsc= 3.5 K, with a critical field of Hc2,c(Hc2,||c)=6.5(4.1) kOe. With Hc, the peak effect was observed in resistivity measurements, indicating the ultrahigh quality of the single crystal studied. The resistivity measurements under high pressure reveal that the Tsc is suppressed linearly with pressure and reaches absolute zero around 20 GPa. Specific heat and muon spin relaxation measurements indicate that the two-gap s-wave model best describes the superconductivity of V2Ga5. The bands near the Fermi level around the Z and Γ points are observed and analyzed by the angle-resolved photoemission spectroscopy measurements and first-principles band structure calculations. We therefore conclude that V2Ga5 is a phonon-mediated two-gap s-wave superconductor. Published by the American Physical Society 2024

Funder

National Science and Technology Council

Academia Sinica

Ministry of Education

Air Force Office of Scientific Research

T.L.L Temple Foundation

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3