Symmetry, topology, and geometry: The many faces of the topological magnetoelectric effect

Author:

Mahon Perry T.1ORCID,Lei Chao1ORCID,MacDonald Allan H.1

Affiliation:

1. University of Texas at Austin

Abstract

A delicate tension complicates the relationship between the topological magnetoelectric effect (TME) in three-dimensional (3D) Z2 topological insulators (TIs) and time-reversal symmetry (TRS). TRS underlies a particular Z2 topological classification of the electronic ground state of crystalline band insulators and the associated quantization of the magnetoelectric response coefficient calculated using bulk linear-response theory but, according to standard symmetry arguments, simultaneously forbids a nonzero magnetoelectric coefficient in any physical finite-size system. This contrast between theories of magnetoelectric response in formal bulk models and in real finite-sized materials originates from the distinct approaches required to introduce notions of (electronic) polarization and orbital magnetization in these fundamentally different environments. In this work we argue for a modified interpretation of the bulk linear-response calculations in nonmagnetic Z2 TIs that is more plainly consistent with TRS and use this interpretation to discuss the effect's observation—still absent over a decade after its prediction. Our analysis is reinforced by microscopic bulk and thin-film calculations carried out using a simplified but still realistic effective model for the well established V2VI3 [V=(Sb,Bi) and VI=(Se,Te)] family of nonmagnetic Z2 TIs. When a uniform dc magnetic field is included in this model, the anomalous n=0 Landau levels (LLs) play the central role, both in thin films and in bulk. In the former case, only the n=0 LL eigenfunctions can support a dipole moment, which vanishes if there are no magnetic surface dopants and is quantized in the thick-film limit if magnetic dopants at the top and bottom surfaces have opposite orientation. In the latter case, the Hamiltonian projected into the n=0 LL subspace is a one-dimensional Su-Schrieffer-Heeger model with ground-state polarization that is quantized in accordance with the bulk linear-response coefficient calculated for (a lattice regularization of) the starting 3D model. Motivated by analytical results, we conjecture a type of microscopic bulk-boundary correspondence: a bulk insulator with (generalized) TRS supports a magnetoelectric coefficient that is purely itinerant (which is generically related to the geometry of the ground state) if and only if magnetic surface dopants are required for the TME to manifest in finite samples thereof. We conclude that in nonmagnetic Z2 TIs the TME is activated by magnetic surface dopants, that the charge-density response to a uniform dc magnetic field is localized at the surface and specified by the configuration of those dopants, and that the TME is qualitatively less robust against disorder than the integer quantum Hall effect. Published by the American Physical Society 2024

Funder

Simons Foundation

Welch Foundation

University of Texas at Austin

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3