Exploring generative AI assisted feedback writing for students’ written responses to a physics conceptual question with prompt engineering and few-shot learning

Author:

Wan Tong1ORCID,Chen Zhongzhou1ORCID

Affiliation:

1. University of Central Florida

Abstract

Instructor’s feedback plays a critical role in students’ development of conceptual understanding and reasoning skills. However, grading student written responses and providing personalized feedback can take a substantial amount of time, especially in large enrollment courses. In this study, we explore using GPT-3.5 to write feedback on students’ written responses to conceptual questions with prompt engineering and few-shot learning techniques. In stage I, we used a small portion (n=20) of the student responses on one conceptual question to iteratively train GPT to generate feedback. Four of the responses paired with human-written feedback were included in the prompt as examples for GPT. We tasked GPT to generate feedback for another 16 responses and refined the prompt through several iterations. In stage II, we gave four student researchers (one graduate and three undergraduate researchers) the 16 responses as well as two versions of feedback, one written by the authors and the other by GPT. Students were asked to rate the correctness and usefulness of each feedback and to indicate which one was generated by GPT. The results showed that students tended to rate the feedback by human and GPT equally on correctness, but they all rated the feedback by GPT as more useful. Additionally, the success rates of identifying GPT’s feedback were low, ranging from 0.1 to 0.6. In stage III, we tasked GPT to generate feedback for the rest of the students’ responses (n=65). The feedback messages were rated by four instructors based on the extent of modification needed if they were to give the feedback to students. All four instructors rated approximately 70% (ranging from 68% to 78%) of the feedback statements needing only minor or no modification. This study demonstrated the feasibility of using generative artificial intelligence (AI) as an assistant to generate feedback for student written responses with only a relatively small number of examples in the prompt. An AI assistant can be one of the solutions to substantially reduce time spent on grading student written responses. Published by the American Physical Society 2024

Funder

University of Central Florida

University of Central Florida Digital Curriculum Innovation Initiative

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3