Application of deep learning methods for beam size control during user operation at the Advanced Light Source

Author:

Hellert Thorsten1ORCID,Ford Tynan1ORCID,Leemann Simon C.1ORCID,Nishimura Hiroshi1,Venturini Marco1ORCID,Pollastro Andrea2ORCID

Affiliation:

1. Lawrence Berkeley National Laboratory

2. University of Naples Federico II

Abstract

Past research at the Advanced Light Source (ALS) provided a proof-of-principle demonstration that deep learning methods could be effectively employed to compensate for the significant perturbations to the transverse electron beam size induced by user-controlled adjustments of the insertion devices. However, incorporating these methods into the ALS’ daily operations has faced notable challenges. The complexity of the system’s operational requirements and the significant upkeep demands has restricted their sustained application during user operation. Here, we introduce the development of a more robust neural network (NN)-based algorithm that utilizes a novel online fine-tuning approach and its systematic integration into the day-to-day machine operations. Our analysis emphasizes the process of NN model selection, demonstrates the superior performance of the NN-based method over traditional feedback methods, and examines the effectiveness and resilience of the new algorithm during user-operation scenarios. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3