Nonuniversality of heavy quark hadronization in elementary high-energy collisions

Author:

Dai Yuxuan1ORCID,Zhao Shouxing1ORCID,He Min12ORCID

Affiliation:

1. Nanjing University of Science and Technology

2. Fudan University

Abstract

It has been traditionally hypothesized that the heavy quark (charm c and bottom b) fragmentation is universal across different collision systems, based on the notion that hadronization as a soft process should occur at the characteristic nonperturbative quantum chromodynamics (QCD) scale, ΛQCD. However, this universality hypothesis has recently been challenged by the observation that the c- and b-baryon production relative to their meson counterparts in minimum bias proton-proton (pp) collisions at the CERN Large Hadron Collider (LHC) energies is significantly enhanced as compared to the electron-positron (e+e) collisions. The conception of nonuniversality is unambiguously reinforced by the latest measurement of the charged-particle multiplicity dependence of the b-baryon–to–meson yield ratio, Λb/B, by the LHCb experiment in s=13TeVpp collisions at the LHC, evolving continuously from the saturation value in minimum bias pp collisions toward the small value in e+e collisions as the system size gradually reduces. We address the multiplicity dependence of b-baryon production in the canonical statistical hadronization model with input b-hadron spectrum augmented with many hitherto unobserved states from quark model predictions. We demonstrate that the decreasing trend of the Λb/B toward low multiplicities can be quantitatively understood from the canonical suppression on the yield of Λb, as caused by the requirement of strict conservation of baryon number in sufficiently small systems. We have therefore proposed a plausible scenario for understanding the origin of the nonuniversality of heavy quark fragmentation in elementary collisions. Published by the American Physical Society 2024

Funder

Fudan University

National Natural Science Foundation of China

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3