Enumeration of Spin-Space Groups: Toward a Complete Description of Symmetries of Magnetic Orders

Author:

Jiang Yi1234,Song Ziyin123ORCID,Zhu Tiannian123,Fang Zhong12,Weng Hongming125ORCID,Liu Zheng-Xin6ORCID,Yang Jian12,Fang Chen12572ORCID

Affiliation:

1. Institute of Physics

2. Chinese Academy of Sciences

3. University of Chinese Academy of Sciences

4. Donostia International Physics Center (DIPC)

5. Songshan Lake Materials Laboratory

6. Renmin University

7. Kavli Institute for Theoretical Sciences

Abstract

Symmetries of three-dimensional periodic scalar fields are described by 230 space groups (SGs). Symmetries of three-dimensional periodic (pseudo)vector fields, however, are described by the spin-space groups (SSGs), which were initially used to describe the symmetries of magnetic orders. In SSGs, the real-space and spin degrees of freedom are unlocked in the sense that an operation could have different spatial and spin rotations. SSGs give a complete symmetry description of magnetic structures and have natural applications in the band theory of itinerary electrons in magnetically ordered systems with weak spin-orbit coupling. , a concept raised recently that belongs to the symmetry-compensated collinear magnetic orders but has nonrelativistic spin plitting, is well described by SSGs. Because of the vast number and complicated group structures, SSGs have not yet been systematically enumerated. In this work, we exhaust SSGs based on the invariant subgroups of SGs, with spin operations constructed from three-dimensional (3D) real representations of the quotient groups for the invariant subgroups. For collinear and coplanar magnetic orders, the spin operations can be reduced into lower-dimensional real representations. As the number of SSGs is infinite, we consider only SSGs that describe magnetic unit cells up to 12 times crystal unit cells. We obtain 157 289 noncoplanar, 24 788 coplanar-noncollinear, and 1421 collinear SSGs. The enumerated SSGs are stored in an online database with a user-friendly interface. We develop an algorithm to identify SSGs for realistic materials and find SSGs for 1626 magnetic materials. We also discuss several potential applications of SSGs, including the representation theory, topological states protected by SSGs, structures of spin textures, and refinement of magnetic neutron diffraction patterns using SSGs. Our results serve as a solid starting point for further studies of symmetry and topology in magnetically ordered materials. Published by the American Physical Society 2024

Funder

National Key Research and Development Program of China

Chinese Academy of Sciences

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Renmin University of China

New Cornerstone Science Foundation

Publisher

American Physical Society (APS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3