SO(5) Deconfined Phase Transition under the Fuzzy-Sphere Microscope: Approximate Conformal Symmetry, Pseudo-Criticality, and Operator Spectrum

Author:

Zhou Zheng12ORCID,Hu Liangdong3ORCID,Zhu W.3,He Yin-Chen1ORCID

Affiliation:

1. Perimeter Institute for Theoretical Physics

2. University of Waterloo

3. Westlake University

Abstract

The deconfined quantum critical point (DQCP) is an example of phase transitions beyond the Landau symmetry-breaking paradigm that attracts wide interest. However, its nature has not been settled after decades of study. In this paper, we apply the recently proposed fuzzy-sphere regularization to study the SO(5) nonlinear sigma model with a topological Wess-Zumino-Witten term, which serves as a dual description of the DQCP with an exact SO(5) symmetry. We demonstrate that the fuzzy sphere functions as a powerful microscope, magnifying and revealing a wealth of crucial information about the DQCP, ultimately paving the way toward its final answer. In particular, through exact diagonalization, we provide clear evidence that the DQCP exhibits approximate conformal symmetry. The evidence includes the existence of a conserved SO(5) symmetry current, a stress tensor, and integer-spaced levels between conformal primaries and their descendants. Most remarkably, we identify 23 primaries and 76 conformal descendants. Furthermore, by examining the renormalization group flow of the lowest symmetry singlet as well as other primaries, we provide numerical evidence in favor of DQCP being pseudo-critical, with the approximate conformal symmetry plausibly emerging from nearby complex fixed points. The primary spectrum we compute also has important implications, including the conclusion that the SO(5) DQCP cannot describe a direct transition from the Néel to valence bond solid phase on the honeycomb lattice. Published by the American Physical Society 2024

Funder

Natural Sciences and Engineering Research Council of Canada

Ministry of Colleges and Universities

National Natural Science Foundation of China

National Key Research and Development Program of China

Department of Innovation, Science and Industry Canada

Publisher

American Physical Society (APS)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3