Wave-Function Network Description and Kolmogorov Complexity of Quantum Many-Body Systems

Author:

Mendes-Santos T.12ORCID,Schmitt M.34ORCID,Angelone A.56ORCID,Rodriguez A.78ORCID,Scholl P.910,Williams H. J.11ORCID,Barredo D.912ORCID,Lahaye T.9ORCID,Browaeys A.9,Heyl M.1ORCID,Dalmonte M.713ORCID

Affiliation:

1. Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany

2. PASQAL SAS, 7 rue L´eonard de Vinci - 91300 Massy, Paris, France

3. Forschungszentrum Jülich GmbH, Peter Grünberg Institute, Quantum Control (PGI-8), 52425 Jülich, Germany

4. University of Regensburg, 93053 Regensburg, Germany

5. Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France

6. eXact lab s.r.l., Via Francesco Crispi 56—34126 Trieste, Italy

7. The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy

8. Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Alfonso Valerio 12/1, 34127, Trieste, Italy

9. Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France

10. California Institute of Technology, Pasadena, California 91125, USA

11. Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom

12. Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, 33940 El Entrego, Spain

13. SISSA-International School of Advanced Studies, via Bonomea 265, 34136 Trieste, Italy

Abstract

Programmable quantum devices are now able to probe wave functions at unprecedented levels. This is based on the ability to project the many-body state of atom and qubit arrays onto a measurement basis which produces snapshots of the system wave function. Extracting and processing information from such observations remains, however, an open quest. One often resorts to analyzing low-order correlation functions—that is, discarding most of the available information content. Here, we introduce wave-function networks—a mathematical framework to describe wave-function snapshots based on network theory. For many-body systems, these networks can become scale-free—a mathematical structure that has found tremendous success and applications in a broad set of fields, ranging from biology to epidemics to Internet science. We demonstrate the potential of applying these techniques to quantum science by introducing protocols to extract the Kolmogorov complexity corresponding to the output of a quantum simulator and implementing tools for fully scalable cross-platform certification based on similarity tests between networks. We demonstrate the emergence of scale-free networks analyzing experimental data obtained with a Rydberg quantum simulator manipulating up to 100 atoms. Our approach illustrates how, upon crossing a phase transition, the simulator complexity decreases while correlation length increases—a direct signature of buildup of universal behavior in data space. Comparing experiments with numerical simulations, we achieve cross-certification at the wave-function level up to timescales of 4μs with a confidence level of 90% and determine experimental calibration intervals with unprecedented accuracy. Our framework is generically applicable to the output of quantum computers and simulators with access to the system wave function and requires probing accuracy and repetition rates accessible to most currently available platforms. Published by the American Physical Society 2024

Funder

H2020 European Research Council

Ministero dell’Istruzione, dell’Università e della Ricerca

Horizon 2020 Framework Programme

Agencia Estatal de Investigación

Jülich Supercomputing Centre, Forschungszentrum Jülich

Agence Nationale de la Recherche

John von Neumann Institute for Computing

Helmholtz Initiative and Networking Fund

Publisher

American Physical Society (APS)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of localization transitions using nonparametric unsupervised learning;Physical Review B;2024-07-12

2. Unsupervised learning of quantum many-body scars using intrinsic dimension;Machine Learning: Science and Technology;2024-05-29

3. Complex quantum networks: a topical review;Journal of Physics A: Mathematical and Theoretical;2024-05-24

4. Network science: Ising states of matter;Physical Review E;2024-05-06

5. Topological Kolmogorov complexity and the Berezinskii-Kosterlitz-Thouless mechanism;Physical Review E;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3