Effective theory for graphene nanoribbons with junctions

Author:

Ostmeyer Johann1ORCID,Razmadze Lado2ORCID,Berkowitz Evan234ORCID,Luu Thomas25ORCID,Meißner Ulf-G.2456ORCID

Affiliation:

1. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom

2. Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, Germany

3. Jülich Supercomputing Center, Forschungszentrum Jülich, 54245 Jülich, Germany

4. Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, 52425 Jülich, Germany

5. Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

6. Tbilisi State University, 0186 Tbilisi, Georgia

Abstract

Graphene nanoribbons are a promising candidate for fault-tolerant quantum electronics. In this scenario, qubits are realized by localized states that can emerge on junctions in hybrid ribbons formed by two armchair nanoribbons of different widths. We derive an effective theory based on a tight-binding ansatz for the description of hybrid nanoribbons and use it to make accurate predictions of the energy gap and nature of the localization in various hybrid nanoribbon geometries. We use quantum Monte Carlo simulations to demonstrate that the effective theory remains applicable in the presence of Hubbard interactions. We discover, in addition to the well-known localizations on junctions, which we call “Fuji”, a new type of “Kilimanjaro” localization smeared out over a segment of the hybrid ribbon. We show that Fuji localizations in hybrids of width N and N+2 armchair nanoribbons occur around symmetric junctions if and only if N(mod3)=1, while edge-aligned junctions never support strong localization. This behavior cannot be explained relying purely on the topological Z2 invariant, which has been believed to be the origin of the localizations to date. Published by the American Physical Society 2024

Funder

Chinese Academy of Sciences

Volkswagen Foundation

Science and Technology Facilities Council

Deutsche Forschungsgemeinschaft

Forschungszentrum Jülich

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3