Anisotropic excitonic magnetism from discrete C4 symmetry in CeRhIn5

Author:

Brener D. J.1ORCID,Mallo I. Rodriguez1ORCID,Lane H.2,Rodriguez-Rivera J. A.34ORCID,Schmalzl K.5ORCID,Songvilay M.6,Guratinder K.1,Petrovic C.7,Stock C.1ORCID

Affiliation:

1. University of Edinburgh

2. University of St. Andrews

3. NIST Center for Neutron Research

4. University of Maryland, College Park

5. ILL

6. Université Grenoble Alpes

7. Brookhaven National Laboratory

Abstract

Anisotropy in strongly correlated materials is a central parameter in determining the electronic ground state and is tuned through the local crystalline electric field. This is notably the case in the CeCoxRh1xIn5 system where the ground-state wave function can provide the basis for antiferromagnetism and/or unconventional superconductivity. We develop a methodology to understand the local magnetic anisotropy and experimentally investigate with neutron spectroscopy applied to antiferromagnetic (TN=3.8K) CeRhIn5, which is isostructural to d-wave superconducting (Tc=2.3K) CeCoIn5. Through diagonalizing the local crystal field Hamiltonian with discrete tetragonal C4 point group symmetry and coupling these states with the random phase approximation, we find two distinct modes polarized along the crystallographic c and ab planes, agreeing with experiment. The anisotropy and bandwidth, underlying the energy scale of these modes, are tuneable with a magnetic field which we use experimentally to separate in energy single and multiparticle excitations thereby demonstrating the instability of excitations polarized within the crystallographic ab plane in CeRhIn5. We compare this approach to a Seff=12 parametrizations and argue for the need to extend conventional SU(2) theories of magnetic excitations to utilize the multilevel nature of the underlying crystal-field basis states constrained by the local point-group C4 symmetry. Published by the American Physical Society 2024

Funder

Carnegie Trust for the Universities of Scotland

Royal Society

Engineering and Physical Sciences Research Council

U.S. Department of Energy

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3