The Effect of Trientine on Alcl3-Induced Cognitive Dysfunction and Biochemical Changes in the Hippocampus of Rats

Author:

Mousavi-Nasab Kian1,Amani Mohammad2,Mostafalou Sara1

Affiliation:

1. Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran

2. Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran

Abstract

AbstractCognitive impairments affect millions of people worldwide with an increasing prevalence. Research on their etiology and treatment is developing, nevertheless significant gaps remain. Trientine (TETA), as a copper chelator, has been shown to have beneficial effects in different human chronic diseases such as diabetic cardiomyopathy and neuropathy. Here, we examined the impact of TETA on AlCl3-induced neurocognitive dysfunctions and molecular changes in the hippocampus of rats.Thirty-six male Wistar rats (weighing 200–250 g) were randomly divided into four groups including control, TETA (100 mg/kg/day), AlCl3 (100 mg/kg/day), and AlCl3 (100 mg/kg/day)+TETA (100 mg/kg/day), and received chemicals by gavage for 30 days. At the end of the treatment, the open field maze, elevated plus maze, novel object recognition memory test, and shuttle box test were done. Then after, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3 β (GSK-3β), acetylcholinesterase activity, oxidative stress markers, and inflammatory mediators were measured in the hippocampus.AlCl3 increased anxiety-like behaviors and impaired recognition and short-term memory. TETA was able to improve AlCl3-induced anxiety-like behaviors and short-term memory dysfunction. In the AlCl3-treated group, there was a significant increase in GSK-3β, oxidative stress, pro-inflammatory and pro-apoptotic markers, and decreased BDNF in the hippocampus. Co-administration of TETA was able to decrease lipid peroxidation, inflammation, GSK-3β, and acetylcholinesterase activity, and increase BDNF in the hippocampus compared with AlCl3-treated rats.It can be concluded that TETA was able to improve neurobehavioral and neurocognitive functions by alleviating oxidative stress, inflammation, and pro-apoptotic pathways leading to the normalization of BDNF and GSK-3β.

Publisher

Georg Thieme Verlag KG

Reference37 articles.

1. A review on Alzheimerʼs disease pathophysiology and its management: an update;A Kumar;Pharmacological reports,2015

2. Heavy metals exposure and Alzheimerʼs disease and related dementias;K M Bakulski;Journal of Alzheimerʼs Disease,2020

3. 13 reasons why the brain is susceptible to oxidative stress;J N Cobley;Redox Biology,2018

4. Co-administration of trientine and flaxseed oil on oxidative stress, serum lipids and heart structure in diabetic rats;A Rezaei;Indian J Exp Biol,2013

5. Inflammation induced by photocoagulation laser is minimized by copper chelators;J Z Cui;Lasers in medical science,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3