Affiliation:
1. Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
Abstract
AbstractPulmonary hypertension (PH) is a rare and fatal disease characterized by elevation of pulmonary artery pressure ≥ 25 mm Hg. There are five groups of PH: (1) pulmonary artery (PA) hypertension (PAH), (2) PH due to heart diseases, (3) PH associated with lung diseases/hypoxia, (4) PH associated with chronic obstruction of PA, and (5) PH due to unclear and/or multifactorial mechanisms. The pathophysiologic mechanisms of group 1 have been studied in detail; however, those for groups 2 to 5 are not that well known. PH pathology is characterized by smooth muscle cells (SMC) proliferation, muscularization of peripheral PA, accumulation of extracellular matrix (ECM), plexiform lesions, thromboembolism, and recanalization of thrombi. Advanced glycation end products (AGE) and its receptor (RAGE) and soluble RAGE (sRAGE) appear to be involved in the pathogenesis of PH. AGE and its interaction with RAGE induce vascular hypertrophy through proliferation of vascular SMC, accumulation of ECM, and suppression of apoptosis. Reactive oxygen species (ROS) generated by interaction of AGE and RAGE modulates SMC proliferation, attenuate apoptosis, and constricts PA. Increased stiffness in the artery due to vascular hypertrophy, and vasoconstriction due to ROS resulted in PH. The data also suggest that reduction in consumption and formation of AGE, suppression of RAGE expression, blockage of RAGE ligand binding, elevation of sRAGE levels, and antioxidants may be novel therapeutic targets for prevention, regression, and slowing of progression of PH. In conclusion, AGE–RAGE stress may be involved in the pathogenesis of PH and the therapeutic targets should be the AGE–RAGE axis.
Subject
Cardiology and Cardiovascular Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献